当前位置: X-MOL 学术J. Supercomput. › 论文详情
Dynamic power-aware scheduling of real-time tasks for FPGA-based cyber physical systems against power draining hardware trojan attacks
The Journal of Supercomputing ( IF 2.157 ) Pub Date : 2020-02-13 , DOI: 10.1007/s11227-020-03184-3
Krishnendu Guha, Atanu Majumder, Debasri Saha, Amlan Chakrabarti

Abstract The present era has witnessed deployment of reconfigurable hardware or field-programmable gate arrays (FPGAs) in diverse domains like automation and avionics, which are cyber physical in nature. Such cyber physical systems are associated with strict power budgets. Efficient real-time task-scheduling strategies exist that ensure execution of maximum number of tasks within the power budget. However, these do not consider hardware threats into account. Recent literature has exposed the existence of hardware trojan horses (HTHs). HTHs are malicious circuitry that remain dormant during testing and evade detection, but get activated at runtime to jeopardize operations. HTHs can be etched into the FPGA fabric by adversaries in the untrustworthy foundries, during fabrication of the FPGAs. Even vendors selling reconfigurable intellectual properties or bitstreams that configure the FPGA fabric for task operation may insert HTHs during writing the bitstream codes. HTHs may cause a variety of attacks which may affect the basic security primitives of the system like its integrity, confidentiality or availability. In this work, we explore how power draining ability of HTHs may reduce lifetime of the system. A self-aware approach is also proposed which detects the affected resources of the system and eradicates their use in future to facilitate system reliability. An offline–online scheduling strategy is proposed for periodic tasks which can ensure reliability of their operations till the expected lifetime of the system. Accommodating non-periodic tasks in the periodic task schedule based on available power is also focused. For experimentation, we consider tasks associated with EPFL benchmarks and demonstrate results based on the metric task success rate for periodic tasks and metric task rejection rate for non-periodic tasks.
更新日期:2020-02-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug