当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning
arXiv - CS - Logic in Computer Science Pub Date : 2019-11-22 , DOI: arxiv-1911.10244
Mohammadhosein Hasanbeig; Natasha Yogananda Jeppu; Alessandro Abate; Tom Melham; Daniel Kroening

We propose a method for effective training of deep Reinforcement Learning (RL) agents when the reward is sparse and non-Markovian, but at the same time progress towards the reward requires the attainment of an unknown sequence of high-level objectives. Our method employs a recently-published algorithm for synthesis of compact automata to uncover this sequential structure. We synthesise an automaton from trace data generated through exploration of the environment by the deep RL agent. A product construction is then used to enrich the state space of the environment so that generation of an optimal control policy by deep RL is guided by the discovered structure encoded in the automaton. Our experiments show that our method is able to achieve training results that are otherwise difficult with state-of-the-art RL techniques unaided by external guidance.
更新日期:2020-02-13

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug