当前位置: X-MOL 学术arXiv.cs.GT › 论文详情
A Receding-Horizon MDP Approach for Performance Evaluation of Moving Target Defense in Networks
arXiv - CS - Computer Science and Game Theory Pub Date : 2020-02-07 , DOI: arxiv-2002.05146
Zhentian Qian; Jie Fu; Quanyan Zhu

In this paper, we study the problem of assessing the effectiveness of a proactive defense-by-detection policy with a network-based moving target defense. We model the network system using a probabilistic attack graph--a graphical security model. Given a network system with a proactive defense strategy, an intelligent attacker needs to repeatedly perform reconnaissance to learn about the locations of intrusion detection systems and re-plan optimally to reach the target while avoiding detection. To compute the attacker's strategy for security evaluation, we develop a receding-horizon planning algorithm in a risk-sensitive Markov decision process with a time-varying reward function. Finally, we implement both defense and attack strategies in a synthetic network and analyze how the frequency of network randomization and the number of detection systems can influence the success rate of the attacker. This study provides insights for designing proactive defense strategies against online and multi-stage attacks carried out by a resourceful attacker.
更新日期:2020-02-13

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug