当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Revisiting Fixed Support Wasserstein Barycenter: Computational Hardness and Efficient Algorithms
arXiv - CS - Computational Complexity Pub Date : 2020-02-12 , DOI: arxiv-2002.04783
Tianyi Lin; Nhat Ho; Xi Chen; Marco Cuturi; Michael I. Jordan

We study the fixed-support Wasserstein barycenter problem (FS-WBP), which consists in computing the Wasserstein barycenter of $m$ discrete probability measures supported on a finite metric space of size $n$. We show first that the constraint matrix arising from the linear programming (LP) representation of the FS-WBP is totally unimodular when $m \geq 3$ and $n = 2$, but not totally unimodular when $m \geq 3$ and $n \geq 3$. This result answers an open problem, since it shows that the FS-WBP is not a minimum-cost flow problem and therefore cannot be solved efficiently using linear programming. Building on this negative result, we propose and analyze a simple and efficient variant of the iterative Bregman projection (IBP) algorithm, currently the most widely adopted algorithm to solve the FS-WBP. The algorithm is an accelerated IBP algorithm which achieves the complexity bound of $\widetilde{\mathcal{O}}(mn^{7/3}/\varepsilon)$. This bound is better than that obtained for the standard IBP algorithm---$\widetilde{\mathcal{O}}(mn^{2}/\varepsilon^2)$---in terms of $\varepsilon$, and that of accelerated primal-dual gradient algorithm---$\widetilde{\mathcal{O}}(mn^{5/2}/\varepsilon)$---in terms of $n$. Empirical studies on simulated datasets demonstrate that the acceleration promised by the theory is real in practice.
更新日期:2020-02-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug