当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Quantum Boosting
arXiv - CS - Computational Complexity Pub Date : 2020-02-12 , DOI: arxiv-2002.05056
Srinivasan Arunachalam; Reevu Maity

Suppose we have a weak learning algorithm $\mathcal{A}$ for a Boolean-valued problem: $\mathcal{A}$ produces hypotheses whose bias $\gamma$ is small, only slightly better than random guessing (this could, for instance, be due to implementing $\mathcal{A}$ on a noisy device), can we boost the performance of $\mathcal{A}$ so that $\mathcal{A}$'s output is correct on $2/3$ of the inputs? Boosting is a technique that converts a weak and inaccurate machine learning algorithm into a strong accurate learning algorithm. The AdaBoost algorithm by Freund and Schapire (for which they were awarded the G\"odel prize in 2003) is one of the widely used boosting algorithms, with many applications in theory and practice. Suppose we have a $\gamma$-weak learner for a Boolean concept class $C$ that takes time $R(C)$, then the time complexity of AdaBoost scales as $VC(C)\cdot poly(R(C), 1/\gamma)$, where $VC(C)$ is the $VC$-dimension of $C$. In this paper, we show how quantum techniques can improve the time complexity of classical AdaBoost. To this end, suppose we have a $\gamma$-weak quantum learner for a Boolean concept class $C$ that takes time $Q(C)$, we introduce a quantum boosting algorithm whose complexity scales as $\sqrt{VC(C)}\cdot poly(Q(C),1/\gamma);$ thereby achieving a quadratic quantum improvement over classical AdaBoost in terms of $VC(C)$.
更新日期:2020-02-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug