当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Efficiently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling
arXiv - CS - Computational Complexity Pub Date : 2018-05-03 , DOI: arxiv-1805.01310
Thomas Bläsius; Tobias Friedrich; Julius Lischeid; Kitty Meeks; Martin Schirneck

We devise a method to enumerate the inclusion-wise minimal hitting sets of a hypergraph. The algorithm has delay $O( m^{k^*+1} \, n^2)$ on $n$-vertex, $m$-edge hypergraphs, where $k^*$ is the rank of the transversal hypergraph, i.e., the cardinality of the largest minimal solution. In particular, on classes of hypergraphs for which $k^*$ is bounded, the delay is polynomial. The algorithm uses space linear in the input size only. The enumeration methods solves the extension problem for minimal hitting sets as a subroutine. We show that this problem, parameterised by the cardinality of the set which is to be extended, is one of the first natural W[3]-complete problems. We give an algorithm for the subroutine that is optimal under the assumption that $W[2] \neq \mathrm{FPT}$ or the exponential time hypothesis (ETH), respectively. Despite the hardness of the extension problem, we provide empirical evidence indicating that the enumeration outperforms its theoretical worst-case guarantee on hypergraphs arising in the profiling of relational databases, namely, in the detection of unique column combinations. Our analysis suggest that these hypergraphs exhibit structure that allows the subroutine to be fast on average.
更新日期:2020-02-13

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug