当前位置: X-MOL 学术Nature › 论文详情
The strength and pattern of natural selection on gene expression in rice
Nature ( IF 43.070 ) Pub Date : 2020-02-12 , DOI: 10.1038/s41586-020-1997-2
Simon C. Groen; Irina Ćalić; Zoé Joly-Lopez; Adrian E. Platts; Jae Young Choi; Mignon Natividad; Katherine Dorph; William M. Mauck; Bernadette Bracken; Carlo Leo U. Cabral; Arvind Kumar; Rolando O. Torres; Rahul Satija; Georgina Vergara; Amelia Henry; Steven J. Franks; Michael D. Purugganan

Levels of gene expression underpin organismal phenotypes1,2, but the nature of selection that acts on gene expression and its role in adaptive evolution remain unknown1,2. Here we assayed gene expression in rice (Oryza sativa)3, and used phenotypic selection analysis to estimate the type and strength of selection on the levels of more than 15,000 transcripts4,5. Variation in most transcripts appears (nearly) neutral or under very weak stabilizing selection in wet paddy conditions (with median standardized selection differentials near zero), but selection is stronger under drought conditions. Overall, more transcripts are conditionally neutral (2.83%) than are antagonistically pleiotropic6 (0.04%), and transcripts that display lower levels of expression and stochastic noise7,8,9 and higher levels of plasticity9 are under stronger selection. Selection strength was further weakly negatively associated with levels of cis-regulation and network connectivity9. Our multivariate analysis suggests that selection acts on the expression of photosynthesis genes4,5, but that the efficacy of selection is genetically constrained under drought conditions10. Drought selected for earlier flowering11,12 and a higher expression of OsMADS18 (Os07g0605200), which encodes a MADS-box transcription factor and is a known regulator of early flowering13—marking this gene as a drought-escape gene11,12. The ability to estimate selection strengths provides insights into how selection can shape molecular traits at the core of gene action.
更新日期:2020-02-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug