当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance.
Advanced Materials ( IF 29.4 ) Pub Date : 2020-02-12 , DOI: 10.1002/adma.201906457
Pai-Chun Wei,Chien-Neng Liao,Hsin-Jay Wu,Dongwang Yang,Jian He,Gill V Biesold-McGee,Shuang Liang,Wan-Ting Yen,Xinfeng Tang,Jien-Wei Yeh,Zhiqun Lin,Jr-Hau He

Thermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials. Entropy engineering is successfully implemented in half-Huesler and IV-VI compounds. In Zintl phases and skutterudites, the efficacy of phase-boundary mapping is demonstrated through unraveling the profound relations among chemical compositions, mutual solubilities of constituent elements, phase instability, microstructures, and resulting TE properties at the operation temperatures. Attention is also given to liquid-like TE materials that exhibit lattice thermal conductivity at lower than the amorphous limit due to intensive mobile ion disorder and reduced vibrational entropy. To conclude, an outlook on the development of next-generation TE materials in line with these thermodynamic routes is given.

中文翻译:

超低热导率和高热电性能的热力学途径。

热电(TE)研究不仅是发现过程中的一门材料,而且还是新颖概念和方法论的温床。在本文中,重点是在三种新兴范例中的最新进展:熵工程,相边界映射和在热力学路径中的液态TE材料。特别是,熵工程是由高熵合金的核心作用所支撑的。扩展的溶解度极限,形成高对称晶体结构的趋势,严重的晶格畸变和缓慢的扩散过程为性能优化,高电子带简并性,丰富的多尺度微结构以及低晶格热导率提供了较大的相空间。性能TE材料。熵工程已成功地在半韦氏化合物和IV-VI化合物中实施。在Zintl相和方钴矿中,通过揭示化学成分,组成元素的互溶性,相不稳定性,微观结构以及在工作温度下产生的TE特性之间的深刻关系,证明了相边界映射的有效性。还应注意由于强烈的移动离子紊乱和减小的振动熵而表现出低于无定形极限的晶格导热率的液体状TE材料。总而言之,给出了与这些热力学路线相一致的下一代TE材料的发展前景。以及在工作温度下产生的TE特性。还应注意由于强烈的移动离子紊乱和减小的振动熵而表现出低于无定形极限的晶格导热率的液体状TE材料。总而言之,对与这些热力学路线一致的下一代TE材料的发展给出了展望。以及在工作温度下产生的TE特性。还应注意由于强烈的移动离子紊乱和减小的振动熵而表现出低于无定形极限的晶格导热率的液体状TE材料。总而言之,对与这些热力学路线一致的下一代TE材料的发展给出了展望。
更新日期:2020-03-24
down
wechat
bug