当前位置: X-MOL 学术Theor. Comput. Sci. › 论文详情
Recognizing hyperelliptic graphs in polynomial time
Theoretical Computer Science ( IF 0.747 ) Pub Date : 2020-02-12 , DOI: 10.1016/j.tcs.2020.02.013
Jelco M. Bodewes, Hans L. Bodlaender, Gunther Cornelissen, Marieke van der Wegen

Based on analogies between algebraic curves and graphs, Baker and Norine introduced divisorial gonality, a graph parameter for multigraphs related to treewidth, multigraph algorithms and number theory. Various equivalent definitions of the gonality of an algebraic curve translate to different notions of gonality for graphs, called stable gonality and stable divisorial gonality.

We consider so-called hyperelliptic graphs (multigraphs of gonality 2, in any meaning of graph gonality) and provide a safe and complete set of reduction rules for such multigraphs. This results in an algorithm to recognize hyperelliptic graphs in time O(m+nlogn), where n is the number of vertices and m the number of edges of the multigraph. A corollary is that we can decide with the same runtime whether a two-edge-connected graph G admits an involution σ such that the quotient G/σ is a tree.

更新日期:2020-02-12

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug