当前位置: X-MOL 学术Theor. Comput. Sci. › 论文详情
Recognizing hyperelliptic graphs in polynomial time
Theoretical Computer Science ( IF 0.718 ) Pub Date : 2020-02-12 , DOI: 10.1016/j.tcs.2020.02.013
Jelco M. Bodewes; Hans L. Bodlaender; Gunther Cornelissen; Marieke van der Wegen

Based on analogies between algebraic curves and graphs, Baker and Norine introduced divisorial gonality, a graph parameter for multigraphs related to treewidth, multigraph algorithms and number theory. Various equivalent definitions of the gonality of an algebraic curve translate to different notions of gonality for graphs, called stable gonality and stable divisorial gonality. We consider so-called hyperelliptic graphs (multigraphs of gonality 2, in any meaning of graph gonality) and provide a safe and complete set of reduction rules for such multigraphs. This results in an algorithm to recognize hyperelliptic graphs in time O(m+nlog⁡n), where n is the number of vertices and m the number of edges of the multigraph. A corollary is that we can decide with the same runtime whether a two-edge-connected graph G admits an involution σ such that the quotient G/〈σ〉 is a tree.
更新日期:2020-02-12

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug