当前位置: X-MOL 学术Theor. Comput. Sci. › 论文详情
Improved Parameterized Algorithms and Kernels for Mixed Domination
Theoretical Computer Science ( IF 0.718 ) Pub Date : 2020-02-11 , DOI: 10.1016/j.tcs.2020.02.014
Mingyu Xiao; Zimo Sheng

A mixed domination of a graph G=(V,E) is a mixed set D of vertices and edges such that for every edge or vertex, if it is not in D, then it is adjacent or incident to at least one vertex or edge in D. The Mixed Domination problem is to check whether there is a mixed domination of size at most k in a graph. Mixed domination is a mixture concept of vertex domination and edge domination, and the mixed domination problem has been studied from the view of approximation algorithms, parameterized algorithms, and so on. In this paper, we give a branch-and-search algorithm with running time bound of O⁎(4.172k), which improves the previous bound of O⁎(7.465k). For kernelization, it is known that the problem parameterized by k in general graphs is unlikely to have a polynomial kernel. We show the problem in planar graphs allows linear kernel by giving a kernel of 11k−16 vertices.
更新日期:2020-02-12

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug