当前位置: X-MOL 学术Theor. Comput. Sci. › 论文详情
Improved parameterized algorithms and kernels for mixed domination
Theoretical Computer Science ( IF 0.747 ) Pub Date : 2020-02-11 , DOI: 10.1016/j.tcs.2020.02.014
Mingyu Xiao, Zimo Sheng

A mixed domination of a graph G=(V,E) is a mixed set D of vertices and edges such that for every edge or vertex, if it is not in D, then it is adjacent or incident to at least one vertex or edge in D. The Mixed Domination problem is to check whether there is a mixed domination of size at most k in a graph. Mixed domination is a mixture concept of vertex domination and edge domination, and the mixed domination problem has been studied from the view of approximation algorithms, parameterized algorithms, and so on. In this paper, we give a branch-and-search algorithm with running time bound of O(4.172k), which improves the previous bound of O(7.465k). For kernelization, it is known that the problem parameterized by k in general graphs is unlikely to have a polynomial kernel. We show the problem in planar graphs allows linear kernel by giving a kernel of 11k16 vertices.

更新日期:2020-02-11

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug