当前位置: X-MOL 学术Connect. Sci. › 论文详情
Hybrid self-inertia weight adaptive particle swarm optimisation with local search using C4.5 decision tree classifier for feature selection problems
Connection Science ( IF 0.673 ) Pub Date : 2019-04-25 , DOI: 10.1080/09540091.2019.1609419
Arfan Ali Nagra; Fei Han; Qing Hua Ling; Muhammad Abubaker; Farooq Ahmad; Sumet Mehta; Abeo Timothy Apasiba

Feature selection is an important task to improve the classifier’s accuracy and to decrease the problem size. A number of methodologies have been presented for feature selection problems using metaheuristic algorithms. In this paper, an improved self-adaptive inertia weight particle swarm optimisation with local search and combined with C4.5 classifiers for feature selection algorithm is proposed. In this proposed algorithm, the gradient base local search with its capacity of helping to explore the feature space and an improved self-adaptive inertia weight particle swarm optimisation with its ability to converge a best global solution in the search space. Experimental results have verified that the SIW-APSO-LS performed well compared with other state of art feature selection techniques on a suit of 16 standard data sets.
更新日期:2020-02-12

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug