当前位置: X-MOL 学术arXiv.cs.LO › 论文详情
Local WL Invariance and Hidden Shades of Regularity
arXiv - CS - Logic in Computer Science Pub Date : 2020-02-11 , DOI: arxiv-2002.04590
Frank Fuhlbrück; Johannes Köbler; Oleg Verbitsky

The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a powerful tool for testing isomorphism of two given graphs. We aim at investigating the ability of $k$-WL to capture properties of vertices (or small sets of vertices) in a single input graph $G$. In general, $k$-WL computes a canonical coloring of $k$-tuples of vertices of $G$, which determines a canonical coloring of $s$-tuples for each $s$ between 1 and $k$. We say that a property (or a numerical parameter) of $s$-tuples is $k$-invariant if it is determined by the tuple color. Our main result establishes $k$-invariance of the parameters counting the number of extensions of an $s$-tuple of vertices to a given subgraph pattern $F$. We state a sufficient condition for $k$-invariance in terms of the treewidth of $F$ and its homomorphic images, using suitable variants of these concepts for graphs with $s$ designated roots. As an application, we observe some non-obvious regularity properties of strongly regular graphs: For example, if $G$ is strongly regular, then the number of paths of length 6 between vertices $x$ and $y$ in $G$ depends only on whether or not $x$ and $y$ are adjacent (and the length 6 is here optimal). Despite the fact that $k$-WL indistinguishability of vertex tuples implies high degree of regularity, we prove, on the negative side, that no fixed dimension $k$ suffices for $k$-WL to recognize global symmetry of a graph. Specifically, for every $k$, there is a graph $G$ whose vertex set is colored by $k$-WL uniformly while $G$ is not vertex-transitive.
更新日期:2020-02-12

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug