当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Control of criticality and computation in spiking neuromorphic networks with plasticity
arXiv - CS - Emerging Technologies Pub Date : 2019-09-17 , DOI: arxiv-1909.08418
Benjamin Cramer; David Stöckel; Markus Kreft; Michael Wibral; Johannes Schemmel; Karlheinz Meier; Viola Priesemann

The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying complexity at - and away from critical network dynamics. To that end, we developed a spiking network with synaptic plasticity on a neuromorphic chip. We show that the distance to criticality can be easily adapted by changing the input strength, and then demonstrate a clear relation between criticality, task-performance and information-theoretic fingerprint. Whereas the information-theoretic measures all show that network capacity is maximal at criticality, this is not the case for performance on specific tasks: Only the complex, memory-intensive tasks profit from criticality, whereas the simple tasks suffer from it. Thereby, we challenge the general assumption that criticality would be beneficial for any task, and provide instead an understanding of how the collective network state should be tuned to task requirement to achieve optimal performance.
更新日期:2020-02-12

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug