当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Control of criticality and computation in spiking neuromorphic networks with plasticity
arXiv - CS - Emerging Technologies Pub Date : 2019-09-17 , DOI: arxiv-1909.08418
Benjamin Cramer; David Stöckel; Markus Kreft; Michael Wibral; Johannes Schemmel; Karlheinz Meier; Viola Priesemann

The critical state is assumed to be optimal for any computation in recurrent neural networks, because criticality maximizes a number of abstract computational properties. We challenge this assumption by evaluating the performance of a spiking recurrent neural network on a set of tasks of varying complexity at - and away from critical network dynamics. To that end, we developed a spiking network with synaptic plasticity on a neuromorphic chip. We show that the distance to criticality can be easily adapted by changing the input strength, and then demonstrate a clear relation between criticality, task-performance and information-theoretic fingerprint. Whereas the information-theoretic measures all show that network capacity is maximal at criticality, this is not the case for performance on specific tasks: Only the complex, memory-intensive tasks profit from criticality, whereas the simple tasks suffer from it. Thereby, we challenge the general assumption that criticality would be beneficial for any task, and provide instead an understanding of how the collective network state should be tuned to task requirement to achieve optimal performance.
更新日期:2020-02-12

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug