当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Rapid Top-Down Synthesis of Large-Scale IoT Networks
arXiv - CS - Computational Complexity Pub Date : 2020-02-11 , DOI: arxiv-2002.04244
Pradipta Ghosh; Jonathan Bunton; Dimitrios Pylorof; Marcos Vieira; Kevin Chan; Ramesh Govindan; Gaurav Sukhatme; Paulo Tabuada; Gunjan Verma

Advances in optimization and constraint satisfaction techniques, together with the availability of elastic computing resources, have spurred interest in large-scale network verification and synthesis. Motivated by this, we consider the top-down synthesis of ad-hoc IoT networks for disaster response and search and rescue operations. This synthesis problem must satisfy complex and competing constraints: sensor coverage, line-of-sight visibility, and network connectivity. The central challenge in our synthesis problem is quickly scaling to large regions while producing cost-effective solutions. We explore two qualitatively different representations of the synthesis problems satisfiability modulo convex optimization (SMC), and mixed-integer linear programming (MILP). The former is more expressive, for our problem, than the latter, but is less well-suited for solving optimization problems like ours. We show how to express our network synthesis in these frameworks, and, to scale to problem sizes beyond what these frameworks are capable of, develop a hierarchical synthesis technique that independently synthesizes networks in sub-regions of the deployment area, then combines these. We find that, while MILP outperforms SMC in some settings for smaller problem sizes, the fact that SMC's expressivity matches our problem ensures that it uniformly generates better quality solutions at larger problem sizes.
更新日期:2020-02-12

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug