当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Location-Based PVO and Adaptive Pairwise Modification for Efficient Reversible Data Hiding
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2020-01-03 , DOI: 10.1109/tifs.2019.2963766
Tong Zhang; Xiaolong Li; Wenfa Qi; Zongming Guo

Pixel-value-ordering (PVO) is an efficient technique of reversible data hiding (RDH). By PVO, the maximum and minimum in each cover image block are first predicted and then modified to embed data. Actually, many PVO-based methods are essentially based on high-dimensional histogram modification. For these methods, a two-dimensional (2D) prediction-error histogram (PEH) is first generated and then modified based on a 2D mapping. However, these methods have two drawbacks. On one hand, the generated 2D PEH is irregular so that it is difficult to design suitable histogram modification strategy. On the other hand, the employed 2D mapping is empirically designed, and thus the embedding performance is far from optimal. Based on these considerations, a new PVO-based RDH scheme is proposed in this paper. By considering both pixel value orders and pixel locations, a new predictor is proposed so that the generated 2D PEH is regular in shape and suitable for reversible embedding. Moreover, instead of manually designing 2D mappings, to optimize the embedding performance, a self-learning mechanism is proposed to adaptively select the 2D mapping according to the image content. With the new predictor and the self-learning mechanism for 2D mapping selection, the proposed method works well with a good marked image quality, e.g., the PSNR of the image Lena is as high as 61.53 dB for an embedding capacity of 10 000 bits. Besides, compared with some state-of-the-art RDH methods, the superiority of the proposed method is experimentally verified.
更新日期:2020-02-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug