当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of Moving Target Defense Against False Data Injection Attacks on Power Grid
IEEE Transactions on Information Forensics and Security ( IF 6.8 ) Pub Date : 2019-07-15 , DOI: 10.1109/tifs.2019.2928624
Zhenyong Zhang , Ruilong Deng , David K. Y. Yau , Peng Cheng , Jiming Chen

Recent studies have considered thwarting false data injection (FDI) attacks against state estimation in power grids by proactively perturbing branch susceptances. This approach is known as moving target defense (MTD). However, despite of the deployment of MTD, it is still possible for the attacker to launch stealthy FDI attacks generated with former branch susceptances. In this paper, we prove that, an MTD has the capability to thwart all FDI attacks constructed with former branch susceptances only if (i) the number of branches l in the power system is not less than twice that of the system states n (i.e., l ≥ 2n, where n + 1 is the number of buses); (ii) the susceptances of more than n branches, which cover all buses, are perturbed. Moreover, we prove that the state variable of a bus that is only connected by a single branch (no matter it is perturbed or not) can always be modified by the attacker. Nevertheless, in order to reduce the attack opportunities of potential attackers, we first exploit the impact of the susceptance perturbation magnitude on the dimension of the stealthy attack space, in which the attack vector is constructed with former branch susceptances. Then, we propose that, by perturbing an appropriate set of branches, we can minimize the dimension of the stealthy attack space and maximize the number of covered buses. Besides, we consider the increasing operation cost caused by the activation of MTD. Finally, we conduct extensive simulations to illustrate our findings with IEEE standard test power systems.

中文翻译:

电网对虚假数据注入攻击的移动目标防御分析

最近的研究已经考虑到通过主动干扰分支电纳来阻止针对电网状态估计的错误数据注入(FDI)攻击。这种方法称为移动目标防御(MTD)。但是,尽管部署了MTD,但攻击者仍然有可能发起由前分支机构产生的隐形FDI攻击。在本文中,我们证明,只有当(i)电力系统中分支的数量l不小于系统状态n的两倍(即, ,l≥2n,其中n +1是总线数);(ii)覆盖所有公交车的n个以上分支机构的电纳扰动。此外,我们证明,仅由单个分支连接的总线的状态变量(无论是否受到干扰)始终可以被攻击者修改。然而,为了减少潜在攻击者的攻击机会,我们首先利用表面感受扰动幅度对隐身攻击空间维数的影响,在隐身攻击空间中,攻击向量是用以前的分支表面感受器构建的。然后,我们建议,通过扰动一组适当的分支,我们可以最小化隐身攻击空间的规模并最大化覆盖的公共汽车的数量。此外,我们考虑了由于MTD激活而导致运营成本增加的问题。最后,我们进行了广泛的仿真,以说明我们在IEEE标准测试电源系统中的发现。然而,为了减少潜在攻击者的攻击机会,我们首先利用表面感受扰动幅度对隐身攻击空间维数的影响,在隐身攻击空间中,攻击向量是用以前的分支表面感受器构建的。然后,我们建议,通过扰动一组适当的分支,我们可以最小化隐身攻击空间的规模并最大化覆盖的公共汽车的数量。此外,我们考虑了由于MTD激活而导致运营成本增加的问题。最后,我们进行了广泛的仿真,以说明我们在IEEE标准测试电源系统中的发现。然而,为了减少潜在攻击者的攻击机会,我们首先利用表面感受扰动幅度对隐身攻击空间维数的影响,在隐身攻击空间中,攻击向量是用以前的分支感受性构造的。然后,我们建议,通过扰动一组适当的分支,我们可以最小化隐身攻击空间的规模并最大化覆盖的公共汽车的数量。此外,我们考虑了由于MTD激活而导致运营成本增加的问题。最后,我们进行了广泛的仿真,以说明我们在IEEE标准测试电源系统中的发现。其中攻击媒介是由先前的分支电纳构成的。然后,我们建议,通过扰动一组适当的分支,我们可以最小化隐身攻击空间的规模,并最大化覆盖公交车的数量。此外,我们考虑了由于MTD激活而导致运营成本增加的问题。最后,我们进行了广泛的仿真,以说明我们在IEEE标准测试电源系统中的发现。其中攻击媒介是由先前的分支电纳构成的。然后,我们建议,通过扰动一组适当的分支,我们可以最小化隐身攻击空间的规模,并最大化覆盖公交车的数量。此外,我们考虑了由于MTD激活而导致运营成本增加的问题。最后,我们进行了广泛的仿真,以说明我们在IEEE标准测试电源系统中的发现。
更新日期:2020-04-22
down
wechat
bug