当前位置: X-MOL 学术IEEE Trans. Inform. Forensics Secur. › 论文详情
Analysis of Moving Target Defense Against False Data Injection Attacks on Power Grid
IEEE Transactions on Information Forensics and Security ( IF 6.211 ) Pub Date : 2019-07-15 , DOI: 10.1109/tifs.2019.2928624
Zhenyong Zhang; Ruilong Deng; David K. Y. Yau; Peng Cheng; Jiming Chen

Recent studies have considered thwarting false data injection (FDI) attacks against state estimation in power grids by proactively perturbing branch susceptances. This approach is known as moving target defense (MTD). However, despite of the deployment of MTD, it is still possible for the attacker to launch stealthy FDI attacks generated with former branch susceptances. In this paper, we prove that, an MTD has the capability to thwart all FDI attacks constructed with former branch susceptances only if (i) the number of branches $l$ in the power system is not less than twice that of the system states $n$ (i.e., $l \geq 2n$ , where $n + 1$ is the number of buses); (ii) the susceptances of more than $n$ branches, which cover all buses, are perturbed. Moreover, we prove that the state variable of a bus that is only connected by a single branch (no matter it is perturbed or not) can always be modified by the attacker. Nevertheless, in order to reduce the attack opportunities of potential attackers, we first exploit the impact of the susceptance perturbation magnitude on the dimension of the stealthy attack space , in which the attack vector is constructed with former branch susceptances. Then, we propose that, by perturbing an appropriate set of branches, we can minimize the dimension of the stealthy attack space and maximize the number of covered buses. Besides, we consider the increasing operation cost caused by the activation of MTD. Finally, we conduct extensive simulations to illustrate our findings with IEEE standard test power systems.
更新日期:2020-02-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug