当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Compressive Sensing-Based Adaptive Active User Detection and Channel Estimation: Massive Access Meets Massive MIMO
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2020-01-16 , DOI: 10.1109/tsp.2020.2967175
Malong Ke; Zhen Gao; Yongpeng Wu; Xiqi Gao; Robert Schober

This paper considers massive access in massive multiple-input multiple-output (MIMO) systems and proposes an adaptive active user detection and channel estimation scheme based on compressive sensing. By exploiting the sporadic traffic of massive connected user equipments and the virtual angular domain sparsity of massive MIMO channels, the proposed scheme can support massive access with dramatically reduced access latency. Specifically, we design non-orthogonal pseudo-random pilots for uplink broadband massive access, and formulate the active user detection and channel estimation as a generalized multiple measurement vector compressive sensing problem. Furthermore, by leveraging the structured sparsity of the uplink channel matrix, we propose an efficient generalized multiple measurement vector approximate message passing (GMMV-AMP) algorithm to realize joint active user detection and channel estimation based on a spatial domain or an angular domain channel model. To jointly exploit the channel sparsity present in both the spatial and the angular domains for enhanced performance, a Turbo-GMMV-AMP algorithm is developed for detecting the active users and estimating their channels in an alternating manner. Finally, an adaptive access scheme is proposed, which adapts the access latency to guarantee reliable massive access for practical systems with unknown channel sparsity level. Additionally, the state evolution of the proposed GMMV-AMP algorithm is derived to predict its performance. Simulation results demonstrate the superiority of the proposed active user detection and channel estimation schemes compared to several baseline schemes.
更新日期:2020-02-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug