当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Quickly Finding the Best Linear Model in High Dimensions via Projected Gradient Descent
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2020-01-06 , DOI: 10.1109/tsp.2020.2964216
Yahya Sattar; Samet Oymak

We study the problem of finding the best linear model that can minimize least-squares loss given a dataset. While this problem is trivial in the low-dimensional regime, it becomes more interesting in high-dimensions where the population minimizer is assumed to lie on a manifold such as sparse vectors. We propose projected gradient descent (PGD) algorithm to estimate the population minimizer in the finite sample regime. We establish linear convergence rate and data-dependent estimation error bounds for PGD. Our contributions include: 1) The results are established for heavier tailed subexponential distributions besides subgaussian and allows for an intercept term. 2) We directly analyze the empirical risk minimization and do not require a realizable model that connects input data and labels. The numerical experiments validate our theoretical results.
更新日期:2020-02-11

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug