当前位置: X-MOL 学术IEEE Trans. Aerosp. Electron. Sys. › 论文详情
Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering
IEEE Transactions on Aerospace and Electronic Systems ( IF 2.797 ) Pub Date : 2019-06-04 , DOI: 10.1109/taes.2019.2920220
Karl Granström; Maryam Fatemi; Lennart Svensson

This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense, the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target $\delta$ -generalized labelled multi-Bernoulli and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets.
更新日期:2020-02-11

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug