当前位置: X-MOL 学术Antimicrob. Resist. Infect. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced bactericidal effect of ceftriaxone drug encapsulated in nanostructured lipid carrier against gram-negative Escherichia coli bacteria: drug formulation, optimization, and cell culture study.
Antimicrobial Resistance & Infection Control ( IF 5.5 ) Pub Date : 2020-02-10 , DOI: 10.1186/s13756-020-0690-4
Sahar Ebrahimi 1 , Nafiseh Farhadian 1 , Mohammad Karimi 2, 3 , Mohsen Ebrahimi 4
Affiliation  

BACKGROUND Ceftriaxone is one of the most common types of antibiotics used to treat most deadly bacterial infections. One way to alleviate the side effects of medication is to reduce drug consumption by changing the ordinary drug forms into nanostructured forms. In this study, a nanostructured lipid carrier (NLC) containing hydrophilic ceftriaxone sodium drug is developed, and its effect on eliminating gram-negative bacteria Escherichia coli death is investigated. METHODS Double emulsion solvent evaporation method is applied to prepare NLC. Mathematical modeling based on the solubility study is performed to select the best materials for NLC preparation. Haftyzer-Van Krevelen and Hoy's models are employed for this purpose. Drug release from optimized NLC is examined under in vitro environment. Then, the efficacy of the optimized sample on eliminating gram-negative bacteria Escherichia coli is investigated. RESULTS Mathematical modeling reveals that both methods are capable of predicting drug encapsulation efficiency trends by chaining solid and liquid lipids. However, Haftyzer-Van Krevelen's method can precisely predict the particle size trend by changing the surfactant types in water and oily phases of emulsions. The optimal sample has a mean particle size of 86 nm and drug entrapment efficiency of 83%. Also, a controlled drug release in prepared nanostructures over time is observed under in-vitro media. The results regarding the effectiveness of optimized NLC in killing Escherichia coli bacteria suggests that by cutting drug dosage of the nanostructured form in half, an effect comparable to that of free drug can be observed at longer times. CONCLUSION Results confirm that NLC structure is an appropriate alternative for the delivery of ceftriaxone drug with a controlled release behavior.

中文翻译:

封装在纳米结构脂质载体中的头孢曲松药物对革兰氏阴性大肠杆菌的杀菌作用增强:药物配方,优化和细胞培养研究。

背景技术头孢曲松是用于治疗最致命的细菌感染的最常见类型的抗生素之一。减轻药物副作用的一种方法是通过将普通药物形式变为纳米结构形式来减少药物消耗。在这项研究中,开发了一种包含亲水性头孢曲松钠药物的纳米结构脂质载体(NLC),并研究了其对革兰氏阴性细菌大肠杆菌死亡的消除作用。方法采用双乳化溶剂蒸发法制备NLC。进行了基于溶解度研究的数学建模,以选择用于制备NLC的最佳材料。为此,采用了Haftyzer-Van Krevelen和Hoy的模型。在体外环境下检查了从优化的NLC释放的药物。然后,研究了优化样品消除革兰氏阴性细菌大肠杆菌的功效。结果数学建模表明,这两种方法都可以通过链接固体和液体脂质来预测药物封装效率的趋势。但是,Haftyzer-Van Krevelen的方法可以通过更改乳液水相和油相中的表面活性剂类型来精确预测粒径趋势。最佳样品的平均粒径为86 nm,药物截留效率为83%。而且,在体外介质下,观察到随着时间的推移在制备的纳米结构中药物的受控释放。关于优化的NLC在杀死大肠杆菌中的有效性的结果表明,通过将纳米结构形式的药物剂量减少一半,在更长的时间内可以观察到与游离药物相当的效果。结论结果证实NLC结构是具有控制释放行为的头孢曲松药物的合适的替代选择。
更新日期:2020-04-22
down
wechat
bug