当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sintering and biocompatibility of blended elemental Ti-xNb alloys.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2020-02-10 , DOI: 10.1016/j.jmbbm.2020.103691
Yunhui Chen 1 , Pingping Han 2 , Ali Dehghan-Manshadi 3 , Damon Kent 4 , Shima Ehtemam-Haghighi 4 , Casey Jowers 5 , Michael Bermingham 3 , Tong Li 6 , Justin Cooper-White 2 , Matthew S Dargusch 3
Affiliation  

Titanium-niobium (Ti–Nb) alloys have great potential for biomedical applications due to their superior biocompatibility and mechanical properties that match closely to human bone. Powder metallurgy is an ideal technology for efficient manufacture of titanium alloys to generate net-shape, intricately featured and porous components. This work reports on the effects of Nb concentrations on sintered Ti-xNb alloys with the aim to establish an optimal composition in respect to mechanical and biological performances. Ti-xNb alloys with 33, 40, 56 and 66 wt% Nb were fabricated from elemental powders and the sintering response, mechanical properties, microstructures and biocompatibility assessed and compared to conventional commercial purity titanium (CPTi). The sintered densities for all Ti-xNb compositions were around 95%, reducing slightly with increasing Nb due to increasing open porosity. Higher Nb levels retarded sintering leading to more inhomogeneous phase and pore distributions. The compressive strength decreased with increasing Nb, while all Ti-xNb alloys displayed higher strengths than CPTi except the Ti–66Nb alloy. The Young's moduli of the Ti-xNb alloys with ≥40 wt% Nb were substantially lower (30–50%) than CPTi. In-vitro cell culture testing revealed excellent biocompatibility for all Ti-xNb alloys comparable or better than tissue culture plate and CPTi controls, with the Ti–40Nb alloy exhibiting superior cell-material interactions. In view of its mechanical and biological performance, the Ti–40Nb composition is most promising for hard tissue engineering applications.



中文翻译:

混合元素Ti-xNb合金的烧结和生物相容性。

钛铌(Ti–Nb)合金具有卓越的生物相容性和与人体骨骼紧密匹配的机械性能,因此在生物医学应用中具有巨大的潜力。粉末冶金是有效制造钛合金以生成网状,复杂特征和多孔成分的理想技术。这项工作报告了Nb浓度对烧结Ti-xNb合金的影响,目的是就机械和生物学性能建立最佳的组成。用元素粉末制造了具有33、40、56和66 wt%Nb的Ti-xNb合金,并评估了烧结响应,机械性能,微观结构和生物相容性,并将其与常规的工业纯钛(CPTi)进行了比较。所有Ti-xNb成分的烧结密度约为95%,由于开孔率的增加,随Nb的增加而略有减少。较高的Nb含量会延迟烧结,从而导致更多的不均匀相和孔分布。压缩强度随Nb的增加而降低,而所有Ti-xNb合金的强度都比CPTi高,除了Ti–66Nb合金。Nb≥40 wt%的Ti-xNb合金的杨氏模量比CPTi低得多(30-50%)。体外细胞培养测试表明,与组织培养板和CPTi对照相比,所有Ti-xNb合金都具有优异的生物相容性,而Ti–40Nb合金表现出优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。较高的Nb含量会延迟烧结,从而导致更多的不均匀相和孔分布。压缩强度随Nb的增加而降低,而所有Ti-xNb合金的强度都比CPTi高,除了Ti–66Nb合金。Nb≥40 wt%的Ti-xNb合金的杨氏模量比CPTi低得多(30-50%)。体外细胞培养测试表明,与组织培养板和CPTi对照相比,所有Ti-xNb合金都具有优异的生物相容性,而Ti–40Nb合金表现出优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。较高的Nb含量会延迟烧结,从而导致更多的不均匀相和孔分布。压缩强度随Nb的增加而降低,而所有Ti-xNb合金的强度都比CPTi高,除了Ti–66Nb合金。Nb≥40 wt%的Ti-xNb合金的杨氏模量比CPTi低得多(30-50%)。体外细胞培养测试表明,与组织培养板和CPTi对照相比,所有Ti-xNb合金都具有优异的生物相容性,而Ti–40Nb合金表现出优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。除Ti–66Nb合金外,所有Ti-xNb合金的强度都比CPTi高。Nb≥40 wt%的Ti-xNb合金的杨氏模量比CPTi低得多(30-50%)。体外细胞培养测试表明,与组织培养板和CPTi对照相比,所有Ti-xNb合金都具有优异的生物相容性,而Ti–40Nb合金表现出优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。除Ti–66Nb合金外,所有Ti-xNb合金的强度都比CPTi高。Nb≥40 wt%的Ti-xNb合金的杨氏模量比CPTi低得多(30-50%)。体外细胞培养测试表明,与组织培养板和CPTi对照相比,所有Ti-xNb合金都具有优异的生物相容性,而Ti–40Nb合金表现出优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。Ti-40Nb合金具有优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。Ti-40Nb合金具有优异的细胞材料相互作用。鉴于其机械和生物学性能,Ti–40Nb组合物最适用于硬组织工程应用。

更新日期:2020-02-10
down
wechat
bug