当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2020/02/05 , DOI: 10.1039/c9ee03787j
Kevin Robert 1, 2, 3, 4, 5 , Didier Stiévenard 1, 2, 3, 4, 5 , Dominique Deresmes 1, 2, 3, 4, 5 , Camille Douard 6, 7, 8, 9, 10 , Antonella Iadecola 6, 7, 8, 9 , David Troadec 1, 2, 3, 4, 5 , Pardis Simon 3, 4, 5, 11, 12 , Nicolas Nuns 3, 4, 5, 11, 12 , Maya Marinova 3, 4, 5, 11, 12 , Marielle Huvé 3, 4, 5, 11, 12 , Pascal Roussel 3, 4, 5, 11, 12 , Thierry Brousse 6, 7, 8, 9, 10 , Christophe Lethien 1, 2, 3, 4, 5
Affiliation  

The Internet of Things, enabled by a worldwide network of interconnected sensors, is limited in its large-scale deployment of nomadic miniaturized devices due to the bounds of energy self-sufficiency. One possible solution, albeit challenging, is constructing on-chip pseudocapacitive micro-supercapacitors. Herein, we achieve the collective fabrication of micro-supercapacitors based on sputtered bi-functional vanadium nitride films acting as the electrode material and as the current collector. The reported surface and volumetric capacitance values (1.2 F cm−2 and >700 F cm−3, respectively) of the 16 μm-thick vanadium nitride film obtained via production-compatible microelectronic deposition methods compete well with those of cutting-edge transition metal oxide/nitride materials, and exceed those of standard carbon electrodes. An arsenal of advanced techniques has been deployed to investigate the pseudocapacitive behavior of sputtered vanadium nitride films in aqueous electrolyte in order to unveil the charge storage process explaining their high capacitance and their improved cycling behavior.

中文翻译:

对用于高性能片上微型超级电容器的伪电容氮化钒厚膜中电荷存储机制的新颖见解

由于能量自给自足的局限性,由互连传感器的全球网络支持的物联网在其游牧微型设备的大规模部署中受到限制。尽管具有挑战性,一种可能的解决方案是构建芯片上的伪电容式微型超级电容器。在此,我们基于溅射的双功能氮化钒薄膜作为电极材料和集电器,实现了微型超级电容器的集体制造。(1.2厘米˚F报告表面和体积电容值-2和> 700°F厘米-3,分别地)的16微米厚的氮化钒膜的获得通过与生产兼容的微电子沉积方法与最先进的过渡金属氧化物/氮化物材料相竞争,并且超过了标准碳电极。为了揭示电荷存储过程以解释其高电容和改善的循环性能,已采用了一系列先进技术来研究溅射的钒化钒薄膜在水性电解质中的拟电容行为。
更新日期:2020-03-19
down
wechat
bug