当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
High-efficiency electrochemical hydrodeoxygenation of bio-phenols to hydrocarbon fuels by a superacid-noble metal particle dual-catalyst system
Energy & Environmental Science ( IF 33.250 ) Pub Date : 2020/01/30 , DOI: 10.1039/c9ee02783a
Wei Liu; Wenqin You; Yutao Gong; Yulin Deng

Electrocatalytic hydrogenation (ECH) provides a “green” route to upgrade oxygenated bio-oil under mild conditions, but is still challenged with the issues of low working current density (<60 mA cm−2) and low faradaic efficiency (usually 20–60%) that seriously hinder its practical applications. Herein, we present a dual-catalyst electrochemical route that achieves extremely high faradaic efficiency (>99% for many chemicals) and high working current density (up to 800 mA cm−2) in the hydrogenation of model bio-oil compounds. More importantly, efficient deoxygenation to alkanes, often thought to be very difficult in conventional ECH, was achieved in the aqueous electrolysis. The dual-catalyst system consists of a suspended noble-metal catalyst and soluble polyoxometalate (POM). The theoretical calculations indicate that the POM functions as a superacid, changing the common hydrogenation route to a carbocation mechanism and resulting in effective electrolytic deoxygenation of oxygenates. Because no current flows through the catalyst, even a non-conductive catalyst can be used, which provides a great opportunity for extension to general applications.
更新日期:2020-02-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug