当前位置: X-MOL 学术Biomater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced mechanical and biological characteristics of PLLA composites through surface grafting of oligolactide on magnesium hydroxide nanoparticles.
Biomaterials Science ( IF 6.6 ) Pub Date : 2020-01-28 , DOI: 10.1039/c9bm01863h
Eun Young Kang 1 , Sung-Bin Park 2 , Bogyu Choi 2 , Seung-Woon Baek 3 , Kyoung-Won Ko 2 , Won-Kyu Rhim 2 , Wooram Park 2 , Ik-Hwan Kim 4 , Dong Keun Han 2
Affiliation  

Poly(l-lactic acid) (PLLA) is a biocompatible and biodegradable polymer that has received much attention as a biomedical material. However, PLLA also produces by-products that acidify the surrounding tissues during in vivo degradation, which induces inflammatory responses. To overcome these problems, magnesium hydroxide nanoparticles (nano-magnesium hydroxide; nMH) were added to the PLLA matrix as a bioactive filler that can suppress inflammatory responses by neutralizing the acidified environment caused by the degradation of PLLA. Despite the advantages of nMH, the strong cohesion of these nanoparticles toward each other makes it difficult to manufacture a polymer matrix containing homogeneous nanoparticles through thermal processing. Here, we prepared two types of surface-modified nMH with oligolactide (ODLLA) utilizing grafting to (GT) and grafting from (GF) strategies to improve the mechanical and biological characteristics of the organic-inorganic hybrid composite. The incorporation of surface-modified nMH not only enhanced mechanical properties, such as Young's modulus, but also improved homogeneity of magnesium hydroxide particles in the PLLA matrix due to the increase in interfacial interaction. Additionally, the PLLA composites with surface-modified nMH exhibited reduced bulk erosion during hydrolytic degradation with lower cytotoxicity and immunogenicity. Hemocompatibility tests on the PLLA composites with nMH showed a higher albumin to fibrinogen ratio (AFR) and a lower influence of platelet activation, when compared with unmodified control samples. Taken all together, the surface-modified nMH could be seen to successfully improve the physical and biological characteristics of polymer composites. We believe this technology has great potential for the development of hybrid nanocomposites for biomedical devices, including cardiovascular implants.

中文翻译:

通过低聚乳酸在氢氧化镁纳米颗粒上的表面接枝,增强了PLLA复合材料的机械和生物学特性。

聚(l-乳酸)(PLLA)是一种生物相容性和可生物降解的聚合物,作为一种生物医学材料备受关注。但是,PLLA还产生在体内降解过程中酸化周围组织的副产物,从而诱发炎症反应。为了克服这些问题,将氢氧化镁纳米颗粒(纳米氢氧化镁; nMH)作为生物活性填料添加到PLLA基质中,该生物活性填料可以通过中和由PLLA降解引起的酸化环境来抑制炎症反应。尽管nMH具有优势,但这些纳米粒子彼此之间的强粘合力使其难以通过热处理来制造包含均质纳米粒子的聚合物基质。这里,我们利用低聚丙交酯(ODLLA)制备了两种类型的表面改性nMH,分别采用了(GT)接枝和(GF)接枝的策略,以改善有机-无机杂化复合材料的机械和生物学特性。加入表面改性的nMH不仅增强了机械性能,如杨氏模量,而且由于界面相互作用的增加,还改善了氢氧化镁颗粒在PLLA基体中的均匀性。此外,具有表面改性nMH的PLLA复合材料在水解降解过程中显示出降低的体积侵蚀,具有较低的细胞毒性和免疫原性。与未修饰的对照样品相比,具有nMH的PLLA复合材料的血液相容性测试显示出更高的白蛋白与纤维蛋白原比率(AFR)和更低的血小板活化影响。放在一起 表面改性的nMH可以成功地改善聚合物复合材料的物理和生物学特性。我们认为,这项技术对于开发用于生物医学设备(包括心血管植入物)的混合纳米复合材料具有巨大的潜力。
更新日期:2020-01-28
down
wechat
bug