当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering microscale systems for fully autonomous intracellular neural interfaces
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2020-02-10 , DOI: 10.1038/s41378-019-0121-y
Swathy Sampath Kumar 1 , Michael S Baker 2 , Murat Okandan 3 , Jit Muthuswamy 1
Affiliation  

Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky, which has largely limited their scalability. Further, acquiring successful intracellular recordings is very tedious, requiring a high degree of skill not readily achieved in a typical laboratory. We report here a robotic, MEMS-based intracellular recording system to overcome the above limitations associated with form factor, scalability, and highly skilled and tedious manual operations required for intracellular recordings. This system combines three distinct technologies: (1) novel microscale, glass–polysilicon penetrating electrode for intracellular recording; (2) electrothermal microactuators for precise microscale movement of each electrode; and (3) closed-loop control algorithm for autonomous positioning of electrode inside single neurons. Here we demonstrate the novel, fully integrated system of glass–polysilicon microelectrode, microscale actuators, and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica (n = 5 cells). Consistent resting potentials (<−35 mV) and action potentials (>60 mV) were recorded after each successful penetration attempt with the controller and microactuated glass–polysilicon microelectrodes. The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems. Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings. The MEMS-based system offers significant advantages: (1) reduction in overall size for potential use in behaving animals, (2) scalable approach to potentially realize multi-channel recordings, and (3) a viable method to fully automate measurement of intracellular recordings. This system will be evaluated in vivo in future rodent studies.



中文翻译:

用于完全自主的细胞内神经接口的工程微型系统

用于体外和体内单个神经元细胞内记录的常规电极和相关定位系统又大又笨重,这在很大程度上限制了它们的可扩展性。此外,获得成功的细胞内记录非常繁琐,需要在典型的实验室中不容易获得的高度技能。我们在此报告了一种基于 MEMS 的机器人细胞内记录系统,以克服与细胞内记录所需的形状因素、可扩展性以及高技能和繁琐的手动操作相关的上述限制。该系统结合了三种不同的技术:(1)用于细胞内记录的新型微型玻璃-多晶硅穿透电极;(2) 电热微致动器,用于每个电极的精确微尺度运动;(3) 单个神经元内部电极自主定位的闭环控制算法。在这里,我们展示了新型的、完全集成的玻璃-多晶硅微电极、微型致动器和控制器,用于从腹部神经节中的单个神经元进行自主细胞内记录。加利福尼亚海兔( n = 5 个细胞)。在使用控制器和微驱动玻璃-多晶硅微电极每次成功穿透尝试后,记录一致的静息电位 (<-35 mV) 和动作电位 (>60 mV)。使用电热微致动器实现的细胞内记录的穿透成功率和质量与传统定位系统相当。来自麻醉大鼠体内实验的初步数据显示细胞内记录成功。基于 MEMS 的系统具有显着的优势:(1) 减小了用于行为动物的潜在用途的整体尺寸,(2) 可扩展的方法来潜在地实现多通道记录,以及 (3) 一种完全自动化细胞内记录测量的可行方法. 该系统将在未来的啮齿动物研究中进行体内评估。

更新日期:2020-02-10
down
wechat
bug