当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles
AIChE Journal ( IF 3.7 ) Pub Date : 2020-02-17 , DOI: 10.1002/aic.16944
Yongli Wu 1, 2 , Qinfu Hou 1 , Aibing Yu 1, 2
Affiliation  

Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.

中文翻译:

将离散粒子模拟与粘性粒子的气体流化的连续性联系起来

离散粒子模拟可以显式考虑粒子间的力并获得流化粘结粒子的微观特性,但计算量大。因此,对于大规模应用而言,将微观离散特性链接到系统的宏观连续体描述至关重要。这项工作通过耦合的计算流体动力学和离散元方法(CFD-DEM)研究了粘性颗粒的流化。首先,离散的CFD-DEM结果表明增加的颗粒内聚力导致严重的颗粒团聚,从而严重影响流化质量。然后,通过加权时间-体积平均法获得连续性,表明随着颗粒内聚力的增加,拉伸压力变得显着。通过将Rumpf相关性合并到固体压力方程中,可以对不同颗粒内聚力的CFD-DEM平均结果进行一致的预测。最后,获得床的那些总体稳定的平均特性,以了解系统的一般宏观特性。
更新日期:2020-04-21
down
wechat
bug