当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parallel Laser Micro/Nano‐Processing for Functional Device Fabrication
Laser & Photonics Reviews ( IF 11.0 ) Pub Date : 2020-02-06 , DOI: 10.1002/lpor.201900062
Yang Li 1 , Minghui Hong 1
Affiliation  

Photolithography is one of the most commonly used techniques in semiconductor manufacturing, which is the foundation for all the modern electronic device fabrication. However, deep and extreme ultraviolet lithographic systems as well as the corresponding photomasks are both relatively expensive. The fabrication methods are based on the low‐speed high‐cost electron‐beam lithography or focused‐ion‐beam etching. Therefore, a maskless high‐speed method is highly recommended for the micro/nano‐structure fabrication. Among all these maskless methods, direct laser writing (DLW) is an important and widely adopted micro‐processing technique. Based on the nonlinear exposure, the feature size can achieve down to tens of nanometers. However, the speed of DLW is a technical bottleneck. To overcome this issue, parallel DLW methods are developed, including the self‐assembly microspheres laser patterning, laser interference lithography, and multifocal array DLW. Herein, the principles, advantages, challenges, and applications of these parallel processing technologies are summarized. Nanoscale resolution for large area arbitrary periodic pattern fabrication is achieved. Meanwhile, these technologies have the unique ability to build 3D structures instead of conventional 2D patterns, which is the direction of future micro/nano‐fabrication. These techniques are widely applied to surface processing and functional device fabrication in the field of sensing, solar cells, and metamaterials.

中文翻译:

并行激光微/纳米加工,用于功能器件的制造

光刻技术是半导体制造中最常用的技术之一,它是所有现代电子设备制造的基础。然而,深紫外光刻系统和相应的光掩模都相对昂贵。制造方法基于低速高成本电子束光刻或聚焦离子束蚀刻。因此,强烈建议在微/纳米结构制造中采用无掩模高速方法。在所有这些无掩膜方法中,直接激光写入(DLW)是一项重要且被广泛采用的微处理技术。基于非线性曝光,特征尺寸可以达到数十纳米。但是,DLW的速度是一个技术瓶颈。为解决此问题,开发了并行DLW方法,包括自组装微球的激光图案化,激光干涉光刻和多焦点阵列DLW。在此,总结了这些并行处理技术的原理,优点,挑战和应用。实现了用于大面积任意周期性图案制造的纳米级分辨率。同时,这些技术具有构建3D结构而不是传统2D图案的独特能力,这是未来微/纳米加工的方向。这些技术广泛应用于传感,太阳能电池和超材料领域的表面处理和功能器件制造。总结了这些并行处理技术的应用。实现了用于大面积任意周期性图案制造的纳米级分辨率。同时,这些技术具有构建3D结构而不是传统2D图案的独特能力,这是未来微/纳米加工的方向。这些技术广泛应用于传感,太阳能电池和超材料领域的表面处理和功能器件制造。总结了这些并行处理技术的应用。实现了用于大面积任意周期性图案制造的纳米级分辨率。同时,这些技术具有构建3D结构而不是传统2D图案的独特能力,这是未来微/纳米加工的方向。这些技术广泛应用于传感,太阳能电池和超材料领域的表面处理和功能器件制造。
更新日期:2020-02-06
down
wechat
bug