当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Turing Computability of Fourier Transforms of Bandlimited and Discrete Signals
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2020-01-06 , DOI: 10.1109/tsp.2020.2964204
Holger Boche; Ullrich J. Monich

The Fourier transform is an important operation in signal processing. However, its exact computation on digital computers can be problematic. In this paper we consider the computability of the Fourier transform and the discrete-time Fourier transform (DTFT). We construct a computable bandlimited absolutely integrable signal that has a continuous Fourier transform, which is, however, not Turing computable. Further, we also construct a computable sequence such that the DTFT is not Turing computable. Turing computability models what is theoretically implementable on a digital computer. Hence, our result shows that the Fourier transform of certain signals cannot be computed on digital hardware of any kind, including CPUs, FPGAs, and DSPs. This also implies that there is no symmetry between the time and frequency domain with respect to computability. Therefore, numerical approaches which employ the frequency domain representation of a signal (like calculating the convolution by performing a multiplication in the frequency domain) can be problematic. Interestingly, an idealized analog machine can compute the Fourier transform. However, it is unclear whether and how this theoretical superiority of the analog machine can be translated into practice. Further, we show that it is not possible to find an algorithm that can always decide for a given signal whether the Fourier transform is computable or not.
更新日期:2020-02-07

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug