当前位置: X-MOL 学术Int. J. Geograph. Inform. Sci. › 论文详情
A deep learning architecture for semantic address matching
International Journal of Geographical Information Science ( IF 3.545 ) Pub Date : 2019-10-24 , DOI: 10.1080/13658816.2019.1681431
Yue Lin; Mengjun Kang; Yuyang Wu; Qingyun Du; Tao Liu

Address matching is a crucial step in geocoding, which plays an important role in urban planning and management. To date, the unprecedented development of location-based services has generated a large amount of unstructured address data. Traditional address matching methods mainly focus on the literal similarity of address records and are therefore not applicable to the unstructured address data. In this study, we introduce an address matching method based on deep learning to identify the semantic similarity between address records. First, we train the word2vec model to transform the address records into their corresponding vector representations. Next, we apply the enhanced sequential inference model (ESIM), a deep text-matching model, to make local and global inferences to determine if two addresses match. To evaluate the accuracy of the proposed method, we fine-tune the model with real-world address data from the Shenzhen Address Database and compare the outputs with those of several popular address matching methods. The results indicate that the proposed method achieves a higher matching accuracy for unstructured address records, with its precision, recall, and F1 score (i.e., the harmonic mean of precision and recall) reaching 0.97 on the test set.
更新日期:2020-02-07

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug