当前位置: X-MOL 学术J. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boundary layer formulations in orthogonal curvilinear coordinates for flow over wind-generated surface waves
Journal of Fluid Mechanics ( IF 3.7 ) Pub Date : 2020-02-06 , DOI: 10.1017/jfm.2020.32
Kianoosh Yousefi , Fabrice Veron

The development of the governing equations for fluid flow in a surface-following coordinate system is essential to investigate the fluid flow near an interface deformed by propagating waves. In this paper, the governing equations of fluid flow, including conservation of mass, momentum and energy balance, are derived in an orthogonal curvilinear coordinate system relevant to surface water waves. All equations are further decomposed to extract mean, wave-induced and turbulent components. The complete transformed equations include explicit extra geometric terms. For example, turbulent stress and production terms include the effects of coordinate curvature on the structure of fluid flow. Furthermore, the governing equations of motion were further simplified by considering the flow over periodic quasi-linear surface waves wherein the wavelength of the disturbance is large compared to the wave amplitude. The quasi-linear analysis is employed to express the boundary layer equations in the orthogonal wave-following curvilinear coordinates with the corresponding decomposed equations for the mean, wave and turbulent fields. Finally, the vorticity equations are also derived in the orthogonal curvilinear coordinates in order to express the corresponding velocity–vorticity formulations. The equations developed in this paper proved to be useful in the analysis and interpretation of experimental data of fluid flow over wind-generated surface waves. Experimental results are presented in a companion paper.

中文翻译:

风生表面波上流动的正交曲线坐标中的边界层公式

开发表面跟随坐标系中流体流动的控制方程对于研究因传播波变形的界面附近的流体流动至关重要。在本文中,流体流动的控制方程,包括质量守恒、动量守恒和能量平衡,是在与地表水波相关的正交曲线坐标系中推导出来的。所有方程都进一步分解以提取均值、波浪诱导和湍流分量。完整的变换方程包括显式的额外几何项。例如,湍流应力和生产项包括坐标曲率对流体流动结构的影响。此外,通过考虑周期性准线性表面波上的流动,运动的控制方程得到进一步简化,其中扰动的波长与波幅相比较大。采用拟线性分析法,将正交随波曲线坐标系中的边界层方程用平均场、波浪场和湍流场的相应分解方程表达出来。最后,涡度方程也在正交曲线坐标中导出,以表达相应的速度-涡度公式。事实证明,本文中开发的方程可用于分析和解释风产生的表面波上的流体流动的实验数据。实验结果在配套论文中给出。采用拟线性分析法,将正交随波曲线坐标系中的边界层方程用平均场、波浪场和湍流场的相应分解方程表达出来。最后,涡度方程也在正交曲线坐标中导出,以表达相应的速度-涡度公式。事实证明,本文中开发的方程可用于分析和解释风产生的表面波上的流体流动的实验数据。实验结果在配套论文中给出。采用拟线性分析法,将正交随波曲线坐标系中的边界层方程用平均场、波浪场和湍流场的相应分解方程表达出来。最后,涡度方程也在正交曲线坐标中导出,以表达相应的速度-涡度公式。事实证明,本文中开发的方程可用于分析和解释风产生的表面波上的流体流动的实验数据。实验结果在配套论文中给出。涡度方程也在正交曲线坐标系中导出,以表达相应的速度-涡度公式。事实证明,本文中开发的方程可用于分析和解释风产生的表面波上的流体流动的实验数据。实验结果在配套论文中给出。为了表达相应的速度-涡量公式,涡度方程也在正交曲线坐标系中导出。事实证明,本文中开发的方程可用于分析和解释风产生的表面波上的流体流动的实验数据。实验结果在配套论文中给出。
更新日期:2020-02-06
down
wechat
bug