当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review
Biomass & Bioenergy ( IF 6 ) Pub Date : 2020-02-05 , DOI: 10.1016/j.biombioe.2020.105481
Aicha Asma Houfani , Nico Anders , Antje C. Spiess , Petr Baldrian , Said Benallaoua

Lignocellulose, the most abundant and renewable resource on Earth is an important raw material, which can be converted into high value products. However, to this end, it needs to be pretreated physically, chemically, or biologically. Its complex structure and recalcitrance against physical, chemical, or biological degradation render its breakdown an important target of study. The understanding of the enzymatic processes of lignocellulose breakdown and the changes in its chemistry are thus essential. Here, we review the current analytical challenges in the analysis of lignocellulose composition, lignocelluloytic pretreatment, analysis of enzymatic hydrolysis catalyzed by cellulases or hemicellulases and their biotechnological applications.

Complex techniques including biochemical, genomic, and metagenomics methods such as high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD), Respiration Activity Monitoring System (RAMOS), and next-generation sequencing are described. HPAEC-PAD is a promising, rapid, and reliable analytical technique for sugar quantification following lignocellulose breakdown. RAMOS is an effective technique for monitoring the growth of microorganisms during the different phases of enzyme production, enzymatic hydrolysis, and fermentation. The emergence of high throughput, next-generation sequencing techniques has enriched the databases of genes encoding glycoside hydrolase classes commonly involved in lignocellulose decomposition, and this knowledge can be readily used to analyse the involved processes. Still, novel analytical methods are highly welcome to understand the complete process of lignocelluloytic breakdown. In order to decrease environmental pollution and to save energy, lignocellulose conversion needs to be promoted in order to effectively compete with fossil resources on a global scale in future.



中文翻译:

从纤维素和半纤维素酶降解为可发酵糖的见解–综述

木质纤维素是地球上最丰富和可再生的资源,是一种重要的原材料,可以转化为高价值的产品。但是,为此目的,需要对其进行物理,化学或生物学预处理。其复杂的结构以及对物理,化学或生物降解的抵抗力使其分解成为重要的研究目标。因此,对木质纤维素分解的酶促过程及其化学变化的理解至关重要。在这里,我们回顾了木质纤维素组成分析,木质纤维素预处理,纤维素酶或半纤维素酶催化的酶水解及其生物技术应用方面的当前分析挑战。

描述了包括生化,基因组和宏基因组学方法在内的复杂技术,例如高效阴离子交换色谱与脉冲安培检测(HPAEC-PAD),呼吸活动监测系统(RAMOS)和下一代测序。HPAEC-PAD是一种有前景,快速且可靠的分析技术,可用于木质纤维素分解后的糖定量。RAMOS是一种有效的技术,可在酶生产,酶促水解和发酵的不同阶段监控微生物的生长。高通量,下一代测序技术的出现丰富了通常参与木质纤维素分解的糖苷水解酶类别编码基因的数据库,这些知识可以轻松地用于分析所涉及的过程。仍然,非常欢迎使用新颖的分析方法来了解木质纤维素分解的完整过程。为了减少环境污染并节省能源,需要促进木质纤维素转化,以便将来在全球范围内有效地与化石资源竞争。

更新日期:2020-02-06
down
wechat
bug