当前位置: X-MOL 学术Metall. Mater. Trans. A › 论文详情
The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage
Metallurgical and Materials Transactions A ( IF 1.985 ) Pub Date : 2000 , DOI: 10.1007/s11661-000-0007-4
Douglas P. Fairchild,D. G. Howden,William A. T. Clark

The cleavage resistance of two microalloyed steels (steels A and B) was studied using several tests, including the instrumented precracked Charpy and Charpy V-notch (CVN) techniques. Ductile-to-brittle transition temperatures were measured for the base-metal and simulated heat-affected zone (HAZ) microstructures. Steel B showed inferior cleavage resistance to steel A, and this could not be explained by differences in gross microstructure. Scanning electron fractography revealed that TiN inclusions were responsible for cleavage initiation in steel B. These inclusions were well bonded to the ferritic matrix. It is believed that a strong inclusion-matrix bond is a key factor in why TiN inclusions are potent cleavage initiators in steel. Strong bonding allows high stresses in a crack/notch-tip plastic zone to act on the inclusions without debonding the interface. Once an inclusion cleaves, the strong bond allows for transfer of the TiN crack into the ferritic matrix. It was estimated that only 0.0016 wt pct Ti was tied up in the offending inclusions in steel B. This indicates that extended times at high temperatures during the casting of such steels could produce TiN-related toughness deterioration at even modest Ti contents.
更新日期:2020-01-01

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug