当前位置: X-MOL 学术Metall. Mater. Trans. A › 论文详情
Structure-property correlation of submerged-arc and gas-metal-arc weldments in HY-100 steel
Metallurgical and Materials Transactions A ( IF 1.985 ) Pub Date : 1987 , DOI: 10.1007/bf02668547
P S Deb,Kenneth D. Challenger,A. E. Therrien

Structure-property relationships of two HY-100 steel weldments prepared by submerged arc (SAW) and gas metal arc (GMAW) welding processes using identical heat input (2.2 kJ mm-1) have been studied. It has been found that submerged arc welded (SAW) HY-100 steel weldments have a lower weld toughness than welds produced by the gas metal arc welding (GMAW) process. Optical, scanning, and transmission electron microscopy were used in conjunction with microhardness traverses to characterize and compare the various microconstituents that are present in the last weld pass of both weldments. TEM examination revealed the presence of coarse upper bainite, B-II bainite, and carbides in a highly dislocated ferrite matrix as well as in ferrite laths in the SAW weldment, while the GMAW weldment exhibited a typical fine low carbon lath martensite, autotempered martensite, and mixed B-II and B-III bainites which occasionally contained small regions of twinned martensite. The measured cooling rate in the SAW was found to be about 40 pct slower than that in GMAW. It was also found in the SAW that the weld metal inclusion number density was about 25 pct greater than that in GMAW. Micro-hardness traverses exhibited significantly lower hardness (about 50 HV) in the SAW weldment compared with GMAW, but the tempered weld metal microhardness in both the weldments was measured about the same, at 250 HV. The ductile-to-brittle transition temperature (DBTT) of both weldments was determined by Charpy impact test. Based on an average energy criterion, the DBTT of the SAW weldment was 323 K (50 °C) higher than that of the GMAW weldment. This difference in fracture resistance is due to the different weld metal microstructures. The different microstructures most probably result from differences in cooling rate subsequent to welding; however, the SAW weld also has a higher inclusion number density which could promote a higher transformation temperature for the austenite.
更新日期:2020-01-01

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug