当前位置: X-MOL 学术Metall. Mater. Trans. A › 论文详情
Microstructural evolution of a nanocrystalline Ti−47Al−3Cr alloy during annealing in the α+γ-phase field
Metallurgical and Materials Transactions A ( IF 1.985 ) Pub Date : 1999 , DOI: 10.1007/s11661-999-1006-8
M. L. Öveçoglu,O. N. Senkov,N. Srisukhumbowornchai,F. H. Froes

Prealloyed, gas-atomized (GA) Ti−47Al−3Cr alloy powder, containing about 70 pct of the α2 (Ti3Al) phase and 30 pct of the γ (TiAl) phase, was fully amorphized by mechanical alloying. The amorphous phase was stable during heating to 600°C, but decomposed at higher temperatures, with an exothermic reaction peak at 624°C as the material transformed to a mixture of α2 and γ and then to a fully γ structure at 722°C. A nanocrystalline compact with a mean grain size of 42 nm was obtained by hot isostatic pressing (HIP'ing) of the amorphous powder at 725°C. Isothermal annealing experiments were conducted in the two-phase α+γ field, at 1200°C, using holding times of 5, 10, 25, and 35 hours, followed by air cooling. The X-ray diffractometry and analytical transmission electron microscopy investigations carried out on annealed and air-cooled specimens revealed only the presence of the γ grains, which coarsened on annealing. Initially, the grains grew, followed by a saturation stage after annealing for 25 hours, with a saturation grain size of about 1 μm. This grain growth and saturation behavior can be described with a normal grain growth mechanism in which a permanent pinning force is taken into account. Twins formed in the γ grains as a result of annealing and air cooling and exhibited a common twinning plane of (111) with the matrix phase. The minimum γ grain size in which twinning occurred in the annealed specimens was determined to be 0.25 μm, which suggests that twinning is energetically unfavorable in the nanometer-sized grains.
更新日期:2020-01-01

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug