当前位置: X-MOL 学术Mater. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Why Materials Theory?
Materials Theory Pub Date : 2017-05-25 , DOI: 10.1186/s41313-017-0001-5
Anter El-Azab

Materials science is an interdisciplinary field with the broad objectives of understanding the structure and properties of materials and the discovery of new materials. In his historical account of this field titled The Coming of Materials Science (Cahn et al. 2003), R. W. Cahn referred to the middle of the past century as the time materials science was born out of metallurgy. Materials science has expanded since then to cover the science of ceramics, polymers, semiconductors, and numerous functional materials. Since the inception of materials science, experiment has been a central theme underlying investigation of the structure and properties of materials while modelling was aimed initially at the interpretation of experimental results. However, with the need to understand increasingly complex materials structures and the connection of materials structure with materials behaviour, advanced theoretical concepts from the fields of physics, chemistry, mechanics, applied mathematics, and statistics were introduced. Thus, the development of rigorous models for materials structure, materials defects, microstructure evolution, and the behaviour of materials became a second thrust of materials science. Over the past three decades, the theory of materials has worked hand in hand with experiments to interpret results and to explore materials behaviour under conditions that at present cannot be probed directly by experiments. Concurrently, materials research began to exploit the rapidly increasing power of computers to solve theoretical models and to generate structural and property related data through simulations. This in turn enabled materials discovery for applications, including batteries (Liu et al. 2015) and structural materials (Schmitz et al. 2011). The availability of advanced simulation tools capable of predicting the structure and behaviour of materials over varying length and time scales and the possibility of integrating such tools into materials design marked the coming of integrated computational materials engineering (ICME) (Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security et al. 2008), an approach integrating simulation tools at all relevant scales for the concurrent design of materials, processes, and products. Furthermore, the quest for accelerated materials discovery has ushered in the era of the materials genome (MG), where experiments, computational tools, and big data (Materials Genome Initiative Strategic et al. 2014) are combined to accelerate materials discovery. Advances in computing, data acquisition, and the discovery and design of materials have also led to the application of the principles of informatics to materials (Rajan 2005), whereby information based on the structure and property of materials and their connections are surveyed to enable MG- and ICME-type efforts.

At this point in time, it is fair to state that materials research is driven by materials discovery and engineering. In this regard, understanding the structure of materials and structure-property connections remain key materials research goals toward which experiments, theoretical modelling, and computations will continue to be used in concert. Moreover, continued advances in materials simulation tools require continued development of theoretical materials models. Furthermore, in this era of data-driven materials science, theory serves as a basis for encoding materials data, as with thermodynamic data of materials, and in generating such data, as in using, say, ab initio or mesoscale models to generate structure and property data at various length and time scales. The theory of materials will thus continue to play a major role in advancing materials science, not only at the level of developing mathematical models describing the ever increasing complexity of materials but also in enabling predictive data-driven materials research. Accordingly, an avenue to promote materials theory will thus be important in shaping future directions in the field of materials science. Recognizing the prominent role of theory, the editor initiated discussions regarding the founding of a theory-focused journal with members of the community around the world approximately 5 years ago. Initial brainstorming sessions with Professor Michael Zaiser of The University of Erlangen-Nuremberg and Dr. James Belak of Lawrence Livermore National Laboratory were particularly useful in clarifying the need for such a journal. Motivated by the excitement associated with the perceived role of materials theory and by the absence of “theory-oriented research” in particular within the existing materials publishing venues, further discussions with the community at large continued before a decision to approach Springer with the idea. The preponderance of scientists contacted shared the same enthusiasm for the idea, and a number of them have been incorporated into the editorial board of the new journal, Materials Theory.

Materials Theory is intended for the publication of original research articles, review articles, letters to the editor, rapid communications, and thematic collections in all areas of theoretical materials science and related computations. The journal has an interdisciplinary scope spanning mechanics, physics, and chemistry of materials, and concerning materials structure, synthesis, design, and performance. Providing demonstrable progress in the conceptual, mathematical, and computational formalisms of materials research is essential for the acceptance of manuscripts for publication in Materials Theory. The decision to make Materials Theory an open access provides authors a venue for rapid dissemination of their research in as much as users everywhere will be able to access the journal articles without financial or institutional barriers.

  1. R.W. Cahn, The Coming of Materials Science, 2nd Edn. (Pergamon, 2003).

  2. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security, Committee on Integrated Computational Materials Engineering, National Materials Advisory Board, Division on Engineering and Physical Sciences, National Research Council, National Academies Press (2008).

  3. M Liu et al., Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964–974 (2015)

    Article Google Scholar

  4. Materials Genome Initiative Strategic Plan, National Science and Technology Council, Committee on Technology, Subcommittee on the Materials Genome Initiative (2014).

  5. K Rajan, Materials Informatics. Mater. Today 8, 38–45 (2005)

    Article Google Scholar

  6. GJ Schmitz et al., Towards integrative computational materials engineering of steel components, production engineering. Research and Development 5, 373–382 (2011)

    Google Scholar

Download references

Competing interests

The author declares that he has no competing interests.

Affiliations

  1. School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA

    Anter El-Azab

Authors
  1. Anter El-AzabView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Anter El-Azab.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

El-Azab, A. Why Materials Theory?. Mater Theory 1, 1 (2017). https://doi.org/10.1186/s41313-017-0001-5

Download citation



中文翻译:

为什么选择材料理论

材料科学是一个跨学科领域,其广泛目标是了解材料的结构和特性以及发现新材料。在他对这一领域的历史记载中,材料科学的来临(Cahn等人,2003年)),RW Cahn提到上个世纪中叶是材料科学诞生于冶金学的时代。自那时以来,材料科学领域已扩展到涵盖陶瓷,聚合物,半导体和众多功能材料的科学领域。自材料科学诞生以来,实验一直是研究材料的结构和特性的中心主题,而建模最初旨在解释实验结果。但是,由于需要了解越来越复杂的材料结构以及材料结构与材料行为的联系,因此引入了来自物理,化学,力学,应用数学和统计学领域的高级理论概念。因此,针对材料结构,材料缺陷,微观结构的演变以及材料的行为成为材料科学的第二推力。在过去的三十年中,材料理论与实验相结合,以解释结果并探索在目前无法通过实验直接探测的条件下的材料行为。同时,材料研究开始利用计算机的快速增长的能力来求解理论模型并通过模拟生成与结构和特性相关的数据。反过来,这使得可以发现包括电池在内的各种应用的材料(Liu等 材料理论与实验紧密结合,以解释结果并探索在目前无法通过实验直接探测的条件下的材料行为。同时,材料研究开始利用计算机的快速增长的能力来求解理论模型并通过模拟生成与结构和特性相关的数据。反过来,这使得可以发现包括电池在内的各种应用的材料(Liu等 材料理论与实验紧密结合,以解释结果并探索在目前无法通过实验直接探测的条件下的材料行为。同时,材料研究开始利用计算机的快速增长的能力来求解理论模型并通过模拟生成与结构和特性相关的数据。反过来,这使得能够发现包括电池在内的各种应用的材料(Liu等。2015年)和结构材料(Schmitz等。2011)。能够在不同长度和时间尺度上预测材料结构和行为的高级仿真工具的可用性以及将此类工具集成到材料设计中的可能性标志着集成计算材料工程学(ICME)的到来(集成计算材料工程学:一种转型提高竞争力和国家安全的学科等,2008年),该方法集成了所有相关规模的仿真工具,用于材料,过程和产品的并行设计。此外,对加速材料发现的追求已经进入了材料基因组(MG)时代,在该时代,通过实验,计算工具和大数据(Materials Genome Initiative Strategic等,2014)相结合来加速材料发现。计算,数据获取以及材料发现和设计方面的进步也导致了信息学原理在材料中的应用(Rajan 2005),从而对基于材料的结构和性质及其连接的信息进行了调查,以实现MG -和ICME型的努力。

此时,可以公平地说,材料研究是由材料发现和工程技术驱动的。在这方面,了解材料的结构和结构-属性连接仍然是关键的材料研究目标,将继续朝着这些方向进行实验,理论建模和计算。此外,材料仿真工具的不断发展要求理论材料模型的不断发展。此外,在这个由数据驱动的材料科学的时代,理论是对材料数据(如材料的热力学数据)进行编码以及在生成此类数据(例如使用从头算或中尺度模型生成结构和结构)方面的基础。各种长度和时间尺度的房地产数据。因此,材料理论将不仅在发展描述材料日益复杂的数学模型的水平方面,而且在促进以数据为基础的预测性材料研究的发展中,在推进材料科学方面继续发挥重要作用。因此,促进材料理论的途径对于塑造材料科学领域的未来方向将至关重要。认识到理论的显著作用,约5年前,编辑与世界各地的社区成员就建立以理论为中心的期刊展开了讨论。与Erlangen-Nuremberg大学的Michael Zaiser教授和Lawrence Livermore国家实验室的James Belak博士进行了最初的头脑风暴会议,对于阐明是否需要这种期刊特别有用。受与材料理论的感知作用相关的兴奋以及由于缺乏“面向理论的研究”(尤其是在现有材料出版场所中)的激励,在决定采用Springer的想法之前,继续与整个社区进行进一步讨论。接触过的大多数科学家对此想法都抱有相同的热情,其中许多人已被纳入新杂志的编辑委员会,材料理论

材料理论旨在发表理论材料科学和相关计算各个领域的原始研究论文,评论文章,致编辑的信,快速交流和专题文章。该期刊的跨学科范围涵盖材料的力学,物理和化学,涉及材料的结构,合成,设计和性能。在材料研究的概念,数学和计算形式上提供可证明的进步,对于接受材料理论中的手稿至关重要。做出材料理论的决定 开放访问为作者提供了一个快速传播其研究成果的场所,因为世界各地的用户将能够在不受财务或机构障碍的情况下访问期刊文章。

  1. RW Cahn,《材料科学的来临》,第二版。(佩尔加蒙,2003年)。

  2. 集成计算材料工程:提高竞争力和国家安全的变革学科,集成计算材料工程委员会,国家材料咨询委员会,工程与物理科学部,国家研究委员会,国家科学院出版社(2008年)。

  3. M Liu等人,尖晶石化合物作为多价电池阴极:基于从头算的系统评估。能源环境。科学 8,964-974(2015)

    文章 Google学术搜索

  4. 《材料基因组计划战略计划》,国家科学技术委员会,技术委员会,材料基因组计划小组委员会(2014年)。

  5. K Rajan,材料信息学。母校 今天8,38-45(2005)

    文章 Google学术搜索

  6. GJ Schmitz等人,迈向钢构件的集成计算材料工程,生产工程。研究和开发5,373-382(2011)

    谷歌学术

下载参考

利益争夺

作者宣称他没有竞争利益。

隶属关系

  1. 普渡大学材料工程学院,美国印第安纳州西拉斐特,47907

    安特·阿萨布(Anter El-Azab)

s
  1. Anter El-Azab查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

通讯作者

对应于Anter El-Azab

开放获取本文是根据知识共享署名4.0国际许可(http://creativecommons.org/licenses/by/4.0/)的条款分发的,该许可允许您以任何方式在任何介质中进行无限制的使用,分发和复制。适当的版权归原始作者和来源,提供指向知识共享许可的链接,并指出是否进行了更改。

转载和许可

通过CrossMark验证货币和真实性

引用本文

El-Azab,A。“为什么选择材料理论?”。物质理论 1,1(2017)。https://doi.org/10.1186/s41313-017-0001-5

下载引文

更新日期:2017-05-25
down
wechat
bug