当前位置: X-MOL 学术Stat. Anal. Data Min. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parameter inference with deep jointly informed neural networks
Statistical Analysis and Data Mining ( IF 1.3 ) Pub Date : 2019-08-01 , DOI: 10.1002/sam.11435
Kelli D. Humbird 1, 2 , J. Luc Peterson 1 , Ryan G. McClarren 3
Affiliation  

A common challenge in modeling inertial confinement fusion (ICF) experiments with computer simulations is that many of the simulation inputs are unknown and cannot be directly measured. Often, parameters that are measured in the experiment are used to infer the unknown inputs by solving the inverse problem: finding the set of simulation inputs that result in outputs consistent with the experimental observations. In ICF, this process is often referred to as a “post‐shot analysis.” Post‐shot analyses are challenging as the inverse problem is often highly degenerate, the input parameter space is vast, and simulations are computationally expensive. In this work, deep neural network models equipped with model uncertainty estimates are used to train inverse models, which map directly from output to input space, to find the distribution of post‐shot simulations that are consistent with experimental observations. The inverse model approach is compared to Markov chain Monte Carlo (MCMC) sampling of the forward model, which maps from input to output space, for parameter inference tasks of varying complexity. The inverse models perform best when searching vast parameter spaces for post‐shot simulations that are consistent with a large number of observables, where MCMC sampling can be prohibitively expensive. We demonstrate how augmenting inverse models with autoencoders enable the inclusion of several dozen observables in the inverse mapping, reducing the degeneracy of the model and improving the accuracy of the post‐shot analysis.

中文翻译:

深度联合信息神经网络的参数推断

用计算机模拟对惯性约束融合(ICF)实验进行建模的一个共同挑战是,许多模拟输入是未知的,无法直接测量。通常,在实验中测量的参数可通过解决反问题来推断未知输入:找到一组模拟输入,这些模拟输入会导致输出与实验观察结果一致。在ICF中,此过程通常称为“快照后分析”。拍摄后分析具有挑战性,因为反问题通常会高度退化,输入参数空间很大,并且仿真的计算量很大。在这项工作中,配有模型不确定性估算值的深度神经网络模型用于训练逆模型,该模型直接从输出映射到输入空间,查找与实验观察结果一致的射击后模拟的分布。将逆模型方法与正向模型的马尔可夫链蒙特卡洛(MCMC)采样进行了比较,该采样从输入空间映射到输出空间,以处理复杂度不同的参数推断任务。当在大量的参数空间中搜索与大量可观测值一致的事后模拟时,逆模型的表现最佳,而MCMC采样可能会非常昂贵。我们演示了使用自动编码器增强逆模型如何使逆映射中包含数十个可观察值,减少模型的简并性以及提高事后分析的准确性。将逆模型方法与正向模型的马尔可夫链蒙特卡洛(MCMC)采样进行了比较,该采样从输入空间映射到输出空间,以处理复杂度不同的参数推断任务。当在大量的参数空间中搜索与大量可观测值一致的事后模拟时,逆模型的表现最佳,而MCMC采样可能会非常昂贵。我们演示了使用自动编码器增强逆模型如何使逆映射中包含数十个可观察值,减少模型的简并性以及提高事后分析的准确性。将逆模型方法与正向模型的马尔可夫链蒙特卡罗(MCMC)采样进行了比较,该采样从输入空间映射到输出空间,以应对复杂度不同的参数推断任务。当在大量的参数空间中搜索与大量可观测值一致的事后模拟时,逆模型的性能最佳,而MCMC采样可能会非常昂贵。我们演示了使用自动编码器增强逆模型如何使逆映射中包含数十个可观察值,减少模型的简并性以及提高事后分析的准确性。当在大量的参数空间中搜索与大量可观测值一致的事后模拟时,逆模型的性能最佳,而MCMC采样可能会非常昂贵。我们演示了使用自动编码器增强逆模型如何使逆映射中包含数十个可观察值,减少模型的简并性以及提高事后分析的准确性。当在大量的参数空间中搜索与大量可观测值一致的事后模拟时,逆模型的性能最佳,而MCMC采样可能会非常昂贵。我们演示了使用自动编码器增强逆模型如何使逆映射中包含数十个可观察值,减少模型的简并性以及提高事后分析的准确性。
更新日期:2019-08-01
down
wechat
bug