当前位置: X-MOL 学术J. Vis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of piezoelectrically generated synthetic jet flow
Journal of Visualization ( IF 1.7 ) Pub Date : 2009-03-01 , DOI: 10.1007/bf03181938
A. S. Yang , J. J. Ro , M. T. Yang , W. H. Chang

The purpose of this paper is to investigate the compressible turbulent synthetic jet flow characteristics of a dual diaphragm piezoelectric actuator. Experimentally, a flow visualization system was established to obtain the particle streak images scattered from 10-μm red fluorescent spheres for observing the synthetic jet flowfield produced by a dual diaphragm piezo actuator. The centerline velocity of the synthetic jet was also measured by using a hot-wire anemometry system. In the analysis, the computational approach adopted the transient three-dimensional conservation equations of mass and momentum with the moving boundary specified to represent the piezo diaphragm motion. The standard k-∈ two-equation turbulent model was employed for turbulence closure. For the actuator operating at the frequency of 648 Hz, the particle streakline images in the cross-sectional plane visualized a turbulent jet flow pattern in the far-field area. The hot-wire anemometry data indicated that the measured centerline velocity of synthetic jets reached 3.8 m/s at y/d= 50. The predictions were compared with the visualized particle streak images and centerline velocity of the synthetic jet in order to validate the computer code. The numerical simulation revealed the time-periodic formation and advection of discrete vortex pairs. Caused by the outward movement of the piezo diaphragms, air near the orifice was entrained into the actuator cavity when the vortex pairs were sufficiently distant from the orifice.

中文翻译:

压电产生合成射流的研究

本文的目的是研究双隔膜压电致动器的可压缩湍流合成射流特性。实验上,建立了流动可视化系统以获得从 10-μm 红色荧光球散射的粒子条纹图像,用于观察双隔膜压电执行器产生的合成射流流场。合成射流的中心线速度也通过使用热线风速测量系统进行测量。在分析中,计算方法采用了质量和动量的瞬态三维守恒方程,并指定了移动边界来表示压电膜片的运动。湍流闭合采用标准的k-∈二方程湍流模型。对于工作频率为 648 Hz 的执行器,横截面中的粒子条纹图像显示了远场区域的湍流射流模式。热线测速数据表明,在 y/d=50 时,实测合成射流的中心线速度达到 3.8 m/s。将预测结果与可视化的粒子条纹图像和合成射流的中心线速度进行比较,以验证计算机代码。数值模拟揭示了离散涡对的时间周期形成和平流。由于压电膜片的向外运动,当涡流对距离孔口足够远时,孔口附近的空气被夹带进入致动器腔。热线测速数据表明,在 y/d=50 时,实测合成射流的中心线速度达到 3.8 m/s。将预测结果与可视化的粒子条纹图像和合成射流的中心线速度进行比较,以验证计算机代码。数值模拟揭示了离散涡对的时间周期形成和平流。由于压电膜片的向外移动,当涡流对与孔口足够远时,孔口附近的空气被夹带进入致动器腔。热线测速数据表明,在 y/d=50 时,实测合成射流的中心线速度达到 3.8 m/s。将预测结果与可视化的粒子条纹图像和合成射流的中心线速度进行比较,以验证计算机代码。数值模拟揭示了离散涡对的时间周期形成和平流。由于压电膜片的向外运动,当涡流对距离孔口足够远时,孔口附近的空气被夹带进入致动器腔。数值模拟揭示了离散涡对的时间周期形成和平流。由于压电膜片的向外运动,当涡流对距离孔口足够远时,孔口附近的空气被夹带进入致动器腔。数值模拟揭示了离散涡对的时间周期形成和平流。由于压电膜片的向外移动,当涡流对与孔口足够远时,孔口附近的空气被夹带进入致动器腔。
更新日期:2009-03-01
down
wechat
bug