当前位置: X-MOL 学术J. Sustain. Metall. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Slag Cleaning Equilibria in Iron Silicate Slag–Copper Systems
Journal of Sustainable Metallurgy ( IF 2.4 ) Pub Date : 2019-07-31 , DOI: 10.1007/s40831-019-00237-7
Niko Hellstén , Lassi Klemettinen , Dmitry Sukhomlinov , Hugh O’Brien , Pekka Taskinen , Ari Jokilaakso , Justin Salminen

In this study, the equilibrium distributions of selected trace elements between molten iron-saturated copper alloy and selected iron silicate slags were measured, and the effects of silica fluxing on them. In addition to the copper and iron main components of the system, trace elements like antimony, gallium, germanium, gold, indium, and silver were added in experiments that spanned the temperature range of 1473–1573 K (1200–1300 °C). Experimental charges were quenched and prepared in polished mounts. In situ analyses of the resulting phases were made directly on the mounts without the need of phase separation prior to analysis. Electron probe X-ray microanalysis was used for concentrations at or above approximately 100 ppmw, and laser ablation-inductively coupled plasma-mass spectrometry for the lower concentrations in the slags. The very low slag concentrations of germanium, antimony, and indium obtained indicate that these elements can be removed from the slag by reduction, whereas gallium concentrations in the slag were high. Consequently, gallium removal from iron residues, such as zinc smelting jarosite, is difficult without volatilization. Based on the present observations, the industrial reduction processes for the treatment of smelting and refining slags as well as for the processing of iron residues, and extracting the reducible metal oxides and their metal values can be optimized. The target in fluxing should be to maintain the slag compositions with a silica concentration higher than about 28 wt%.

中文翻译:

硅酸铁渣铜系统中的渣清除平衡

在这项研究中,测量了铁水饱和的铜合金与硅酸铁渣之间的选定微量元素的平衡分布,并研究了二氧化硅助熔剂对其的影响。除了系统中的铜和铁的主要成分外,还添加了痕量元素,如锑,镓,锗,金,铟和银,这些实验的温度范围为1473–1573 K(1200–1300°C)。将实验装料淬火并在抛光的底座中制备。直接在固定架上对所得相进行原位分析,而无需在分析前进行相分离。电子探针X射线微分析的浓度约为或大于100 ppmw,激光消融-电感耦合等离子体质谱法测定炉渣中的较低浓度。所获得的锗,锑和铟的炉渣浓度非常低,表明可以通过还原从炉渣中除去这些元素,而炉渣中的镓浓度很高。因此,如果不挥发,则很难从铁残留物(例如锌冶炼黄铁矿)中除去镓。基于目前的观察,可以优化用于冶炼和精炼炉渣以及铁残留物的处理以及提取可还原金属氧化物及其金属价值的工业还原工艺。助熔剂的目标应该是使炉渣组合物的二氧化硅浓度高于约28wt%。而炉渣中的镓浓度很高。因此,如果不挥发,则很难从铁残留物(例如锌冶炼黄铁矿)中除去镓。基于目前的观察,可以优化用于冶炼和精炼炉渣以及铁残留物的处理以及提取可还原金属氧化物及其金属价值的工业还原工艺。助熔剂的目标应该是使炉渣组合物的二氧化硅浓度高于约28wt%。而炉渣中的镓浓度很高。因此,如果不挥发,则很难从铁残留物(例如锌冶炼黄铁矿)中除去镓。基于目前的观察,可以优化用于冶炼和精炼炉渣以及铁残留物的处理以及提取可还原金属氧化物及其金属价值的工业还原工艺。助熔剂的目标应该是使炉渣组合物的二氧化硅浓度高于约28wt%。提取可还原的金属氧化物及其金属值可以得到优化。助熔剂的目标应该是使炉渣组合物的二氧化硅浓度高于约28wt%。提取可还原的金属氧化物及其金属值可以得到优化。助熔剂的目标应该是使炉渣组合物的二氧化硅浓度高于约28wt%。
更新日期:2019-07-31
down
wechat
bug