当前位置: X-MOL 学术Xenobiotica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A metabolic pathway for the prodrug nabumetone to the pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA) by non-cytochrome P450 enzymes.
Xenobiotica ( IF 1.8 ) Pub Date : 2019-12-27 , DOI: 10.1080/00498254.2019.1704097
Kaori Matsumoto 1 , Tetsuya Hasegawa 1 , Kosuke Ohara 1 , Chihiro Takei 1 , Tomoyo Kamei 1 , Junichi Koyanagi 1 , Tamiko Takahashi 1 , Masayuki Akimoto 1
Affiliation  

The pathway for the transformation of the prodrug nabumetone, 4-(6-methoxynaphthalen-2-yl)butan-2-one, to the active metabolite 6-methoxy-2-naphthylacetic acid (6-MNA), a potent cyclooxygenase-2 inhibitor, has not yet been clarified in humans.To confirm the activation pathway, authentic standards of the nabumetone intermediates, 2-(6-methoxynaphthalen-2-yl)ethyl acetate (6-MNEA), 2-(6-methoxynaphthalen-2-yl)ethan-1-ol (6-MNE-ol) and 2-(6-methoxynaphthalen-2-yl)acetaldehyde (6-MN-CHO) were synthesized. High performance liquid-chromatography and gas chromatography-mass spectrometry on nabumetone oxidation revealed the generation of three metabolites.The formation of 6-MNA after a 60-min incubation of nabumetone was detected and 6-MNE-ol, an alcohol-related intermediate, was also generated by in cryopreserved hepatocytes. However, 6-MNA was below detection limit, but 4-(6-methoxynaphthalen-2-yl)butan-2-ol (MNBO) and 4-(6-hydroxynaphthalen-2-yl)butan-2-one (M3) peak were found in both the microsomes and S9 extracts with any cofactors.Nabumetone has recently been proposed as a typical substrate of flavin-containing monooxygenase isoform 5 (FMO5) and was shown to be efficiently oxidized in vitro to 6-MNEA. 6-MNA was detected in the extract obtained from a combined incubation of recombinant FMO5 and S9 fractions.The specificity of FMO5 towards catalyzing this Baeyer-Villiger oxidation (BVO) was demonstrated by the inhibition of the BVO substrate, 4-methoxyphenylacetone. Further in vitro inhibition studies demonstrated that multiple non-cytochrome P450 enzymes are involved in the formation of 6-MNA.

中文翻译:

非细胞色素P450酶使前药萘丁美通转变成药理活性代谢物6-甲氧基-2-萘乙酸(6-MNA)的代谢途径。

前药萘丁美酮4-(6-甲氧基萘-2-基)丁酮-2-一向活性代谢物6-甲氧基-2-萘乙酸(6-MNA)(一种有效的环加氧酶2)的转化途径抑制剂尚未在人类中阐明。为确认激活途径,萘丁美通中间体的真实标准品为2-(6-甲氧基萘-2-基)乙酸乙酯(6-MNEA),2-(6-甲氧基萘-2)合成了2-基)乙-1-醇(6-MNE-ol)和2-(6-甲氧基萘-2-基)乙醛(6-MN-CHO)。萘丁美酮氧化的高效液相色谱和气相色谱-质谱分析揭示了三种代谢产物的生成。在萘丁美酮孵育60分钟后检测到6-MNA的形成,并检测了与酒精有关的中间体6-MNE-ol,在低温保存的肝细胞中也产生了α。然而,6-MNA低于检测极限,但4-(6-甲氧基萘-2-基)丁-2-醇(MNBO)和4-(6-羟基萘-2-基)丁-2-(M3)峰萘丁美酮最近被提出作为含黄素的单加氧酶同工型5(FMO5)的典型底物,并且在体外被有效氧化为6-MNEA。在重组FMO5和S9馏分的组合温育中获得的提取物中检测到6-MNA.FMO5催化Baeyer-Villiger氧化(BVO)的特异性通过抑制BVO底物4-甲氧基苯基丙酮来证明。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。但是在微粒体和S9提取物中均发现了4-(6-甲氧基萘-2-基)丁-2-醇(MNBO)和4-(6-羟基萘-2-基)丁-2-酮(M3)峰最近有人提出将萘丁美酮作为含黄素的单加氧酶同工型5(FMO5)的典型底物,并已证明在体外能有效氧化为6-MNEA。在重组FMO5和S9馏分的组合温育中获得的提取物中检测到6-MNA.FMO5催化Baeyer-Villiger氧化(BVO)的特异性通过抑制BVO底物4-甲氧基苯基丙酮来证明。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。但是在微粒体和S9提取物中均发现了4-(6-甲氧基萘-2-基)丁-2-醇(MNBO)和4-(6-羟基萘-2-基)丁-2-酮(M3)峰最近有人提出将萘丁美酮作为含黄素的单加氧酶同工型5(FMO5)的典型底物,并已证明在体外能有效氧化为6-MNEA。在重组FMO5和S9馏分的组合温育中获得的提取物中检测到6-MNA.FMO5催化Baeyer-Villiger氧化(BVO)的特异性通过抑制BVO底物4-甲氧基苯基丙酮来证明。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。萘丁美酮最近被提议作为含黄素的单加氧酶同工型5(FMO5)的典型底物,并已显示出在体外可被有效氧化为6-MNEA。在重组FMO5和S9馏分的组合温育中获得的提取物中检测到6-MNA.FMO5催化Baeyer-Villiger氧化(BVO)的特异性通过抑制BVO底物4-甲氧基苯基丙酮来证明。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。萘丁美酮最近被提议作为含黄素的单加氧酶同工型5(FMO5)的典型底物,并已显示出在体外可被有效氧化为6-MNEA。在重组FMO5和S9馏分的组合温育中获得的提取物中检测到6-MNA.FMO5催化Baeyer-Villiger氧化(BVO)的特异性通过抑制BVO底物4-甲氧基苯基丙酮来证明。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。通过抑制BVO底物4-甲氧基苯基丙酮证明了FMO5催化这种Baeyer-Villiger氧化(BVO)的特异性。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。通过抑制BVO底物4-甲氧基苯基丙酮证明了FMO5催化这种Baeyer-Villiger氧化(BVO)的特异性。进一步的体外抑制研究表明,多种非细胞色素P450酶参与了6-MNA的形成。
更新日期:2019-12-27
down
wechat
bug