当前位置: X-MOL 学术J. Vis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wall-PIV as a near wall flow validation tool for CFD: Application in a pathologic vessel enlargement (aneurysm)
Journal of Visualization ( IF 1.7 ) Pub Date : 2009-09-01 , DOI: 10.1007/bf03181862
L. Goubergrits , S. Weber , Ch. Petz , H-Ch. Hege , A. Spuler , J. Poethke , A. Berthe , U. Kertzscher

Flow visualization of a near wall flow is of great importance in the field of biofluid mechanics in general and for studies of pathologic vessel enlargements (aneurysms) particularly. Wall shear stress (WSS) is one of the important hemodynamic parameters implicated in aneurysm growth and rupture. The WSS distributions in anatomically realistic vessel models are normally investigated by computational fluid dynamics (CFD). However, the results of CFD flow studies should be validated. The recently proposed Wall-PIV method was first applied in an enlarged transparent model of a cerebri anterior artery terminal aneurysm made of silicon rubber. This new method, called Wall-PIV, allows the investigation of a flow adjacent to transparent surfaces with two finite radii of curvature (vaulted walls). Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific molecular dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The results of the Wall-PIV flow visualization were qualitatively compared with the results of the CFD flow simulation under steady flow conditions. The CFD study was performed using the program FLUENT®. The results of the CFD simulation were visualized using the line integral convolution (LIC) method with a visualization tool from AMIRA®. The comparison found a very good agreement between experimental and numerical results.

中文翻译:

Wall-PIV 作为 CFD 的近壁流验证工具:在病理性血管扩大(动脉瘤)中的应用

近壁流的流动可视化通常在生物流体力学领域和病理性血管扩大(动脉瘤)的研究中非常重要。壁剪切应力 (WSS) 是与动脉瘤生长和破裂有关的重要血液动力学参数之一。解剖学上真实的血管模型中的 WSS 分布通常通过计算流体动力学 (CFD) 进行研究。但是,应验证 CFD 流动研究的结果。最近提出的 Wall-PIV 方法首先应用于由硅橡胶制成的脑前动脉终末动脉瘤的放大透明模型。这种称为 Wall-PIV 的新方法允许研究与具有两个有限曲率半径(拱形墙)的透明表面相邻的流动。使用允许观察到预定深度的粒子的光学方法可以仅对边界层流进行可视化。这是通过向流体中添加特定分子染料来实现的,该染料吸收用于照亮观察区域的单色光。Wall-PIV 流动可视化的结果与稳态流动条件下的 CFD 流动模拟结果进行了定性比较。CFD 研究是使用程序 FLUENT® 进行的。CFD 模拟的结果使用线积分卷积 (LIC) 方法和 AMIRA® 的可视化工具进行可视化。比较发现实验和数值结果之间非常吻合。这是通过向流体中添加特定分子染料来实现的,该染料吸收用于照亮观察区域的单色光。Wall-PIV 流动可视化的结果与稳态流动条件下的 CFD 流动模拟结果进行了定性比较。CFD 研究是使用程序 FLUENT® 进行的。CFD 模拟的结果使用线积分卷积 (LIC) 方法和 AMIRA® 的可视化工具进行可视化。比较发现实验和数值结果之间非常吻合。这是通过向流体中添加特定分子染料来实现的,该染料吸收用于照亮观察区域的单色光。Wall-PIV 流动可视化的结果与稳态流动条件下的 CFD 流动模拟结果进行了定性比较。CFD 研究是使用程序 FLUENT® 进行的。CFD 模拟的结果使用线积分卷积 (LIC) 方法和 AMIRA® 的可视化工具进行可视化。比较发现实验和数值结果之间非常吻合。CFD 研究是使用程序 FLUENT® 进行的。CFD 模拟的结果使用线积分卷积 (LIC) 方法和 AMIRA® 的可视化工具进行可视化。比较发现实验和数值结果之间非常吻合。CFD 研究是使用程序 FLUENT® 进行的。CFD 模拟的结果使用线积分卷积 (LIC) 方法和 AMIRA® 的可视化工具进行可视化。比较发现实验和数值结果之间非常吻合。
更新日期:2009-09-01
down
wechat
bug