当前位置: X-MOL 学术Mech. Adv. Mater. Mod. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Post-buckled equilibrium state of axially compressed polymeric rod in glass and rubbery transitions
Mechanics of Advanced Materials and Modern Processes Pub Date : 2016-01-22 , DOI: 10.1186/s40759-016-0008-7
Ksenia Alekseevna Tikhomirova , Nikolay Aleksandrovich Trufanov

Glass and rubbery transitions under cooling and heating of polymeric materials underlie a shape memory effect, that is a material ability to save temporarily the deformed shape and restore the original one under the external influence. The present work aims to model the shape memory effect for an axially compressed polymeric rod in its post-buckled equilibrium state, which is the generalization of Euler’s elastica for a glassy material case. For modeling, we use a new type of constitutive relations describing the thermomechanical behavior of amorphous polymers over a wide temperature range. To define the model parameters for lightly-linked epoxy resin a series of experiments was conducted using the Dynamic Mechanical Analyzer. Post-buckled states of an epoxy rod equilibrium during the temperature change have been found from numerical simulation. The obtained results illustrate the shape memory effect in case of axially compressed rod buckling. The thermomechanical shape-memory cycle includes the stages of deformation development and preservation and the subsequent recovery of the initial shape. According to the obtained results, maximum deflection corresponds to the first loading step at the rubbery material state, because the elastic modulus is very low. During cooling under a constant load the deformation remains constant. After unloading in glassy state the deflection decreases by a small value, because the glassy elastic modulus significantly exceeds the rubbery one. During subsequent heating the rod recovers its initial undeformed shape.

中文翻译:

玻璃和橡胶态转变中轴向压缩的聚合物棒的后屈曲平衡状态

在聚合物材料的冷却和加热下的玻璃态和橡胶态转变是形状记忆效应的基础,这是一种材料的功能,可以暂时保存变形的形状并在外部影响下恢复原始形状。本工作的目的是对在其后屈曲平衡状态下轴向压缩的聚合物棒的形状记忆效应进行建模,这是欧拉弹性对玻璃状材料盒的推广。对于建模,我们使用一种新型的本构关系来描述无定形聚合物在较宽温度范围内的热机械行为。为了定义轻链环氧树脂的模型参数,使用动态机械分析仪进行了一系列实验。从数值模拟中发现了温度变化过程中环氧棒平衡的后屈曲状态。所得结果说明了在轴向压缩杆屈曲的情况下的形状记忆效应。热机械形状记忆循环包括变形发展和保持以及随后恢复初始形状的阶段。根据获得的结果,因为弹性模量非常低,所以最大挠度对应于橡胶状材料状态下的第一个加载步骤。在恒定负载下冷却期间,变形保持恒定。在玻璃态下卸载后,挠度减小了一个很小的值,因为玻璃弹性模量明显超过了橡胶态。在随后的加热期间,杆恢复其初始未变形形状。热机械形状记忆循环包括变形发展和保持以及随后恢复初始形状的阶段。根据获得的结果,因为弹性模量非常低,所以最大挠度对应于橡胶状材料状态下的第一个加载步骤。在恒定负载下冷却期间,变形保持恒定。在玻璃态下卸载后,挠度减小了一个很小的值,因为玻璃弹性模量明显超过了橡胶态。在随后的加热期间,杆恢复其初始未变形形状。热机械形状记忆循环包括变形发展和保持以及随后恢复初始形状的阶段。根据获得的结果,因为弹性模量非常低,所以最大挠度对应于橡胶状材料状态下的第一个加载步骤。在恒定负载下冷却期间,变形保持恒定。在玻璃态下卸载后,挠度减小了一个很小的值,因为玻璃弹性模量明显超过了橡胶态。在随后的加热期间,杆恢复其初始未变形形状。因为弹性模量非常低。在恒定负载下冷却期间,变形保持恒定。在玻璃态下卸载后,挠度减小了一个很小的值,因为玻璃弹性模量大大超过了橡胶态。在随后的加热期间,杆恢复其初始未变形形状。因为弹性模量非常低。在恒定负载下冷却期间,变形保持恒定。在玻璃态下卸载后,挠度减小了一个很小的值,因为玻璃弹性模量大大超过了橡胶态。在随后的加热期间,杆恢复其初始未变形形状。
更新日期:2016-01-22
down
wechat
bug