当前位置: X-MOL 学术Comput. Complex. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits
computational complexity ( IF 1.4 ) Pub Date : 2016-06-23 , DOI: 10.1007/s00037-016-0140-0
Yasuhiro Takahashi , Seiichiro Tani

We study the quantum complexity class $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 of quantum operations implementable exactly by constant-depth polynomial-size quantum circuits with unbounded fan-out gates. Our main result is that the quantum OR operation is in $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0, which is an affirmative answer to the question posed by Høyer and Špalek. In sharp contrast to the strict hierarchy of the classical complexity classes: $${\mathsf{NC}^{0} \subsetneq \mathsf{AC}^{0} \subsetneq \mathsf{TC}^{0}}$$NC0⊊AC0⊊TC0, our result with Høyer and Špalek’s one implies the collapse of the hierarchy of the corresponding quantum ones: $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}=\mathsf{QAC}^\mathsf{0}_\mathsf{f}=\mathsf{QTC}^\mathsf{0}_\mathsf{f}}$$QNCf0=QACf0=QTCf0. Then, we show that there exists a constant-depth subquadratic-size quantum circuit for the quantum threshold operation. This allows us to obtain a better bound on the size difference between the $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 and $${\mathsf{QTC}^\mathsf{0}_\mathsf{f}}$$QTCf0 circuits for implementing the same operation. Lastly, we show that, if the quantum Fourier transform modulo a prime is in $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0, there exists a polynomial-time exact classical algorithm for a discrete logarithm problem using a $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 oracle. This implies that, under a plausible assumption, there exists a classically hard problem that is solvable exactly by a $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 circuit with gates for the quantum Fourier transform.

中文翻译:

等深精确量子电路层次结构的崩溃

我们研究了量子运算的量子复杂性类 $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0,可通过具有无限扇出门的恒定深度多项式大小的量子电路完全实现. 我们的主要结果是量子 OR 运算在 $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 中,这是对 Høyer 和 Špalek 提出的问题的肯定回答。与经典复杂性类的严格层次结构形成鲜明对比: $${\mathsf{NC}^{0} \subsetneq \mathsf{AC}^{0} \subsetneq \mathsf{TC}^{0}}$$ NC0⊊AC0⊊TC0,我们与 Høyer 和 Špalek 的结果意味着相应量子层次结构的崩溃:$${\mathsf{QNC}^\mathsf{0}_\mathsf{f}=\mathsf{QAC }^\mathsf{0}_\mathsf{f}=\mathsf{QTC}^\mathsf{0}_\mathsf{f}}$$QNCf0=QACf0=QTCf0。然后,我们表明,对于量子阈值操作,存在一个恒定深度的亚二次尺寸量子电路。这使我们能够更好地限制 $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 和 $${\mathsf{QTC}^\mathsf 之间的大小差异{0}_\mathsf{f}}$$QTCf0 电路用于实现相同的操作。最后,我们证明,如果量子傅立叶变换模一个素数在 $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 中,则存在多项式时间精确经典算法对于使用 $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 oracle 的离散对数问题。这意味着,在一个似是而非的假设下,存在一个经典的难题,该问题可以通过带有门的 $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 电路完全解决量子傅立叶变换。
更新日期:2016-06-23
down
wechat
bug