当前位置: X-MOL 学术Adsorp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of pore structure characteristics and adsorption characteristics of coals with different destruction types
Adsorption Science & Technology ( IF 2.9 ) Pub Date : 2019-08-08 , DOI: 10.1177/0263617419868076
Jiwei Yue 1 , Zhaofeng Wang 2 , Jinsheng Chen 3 , Menghao Zheng 1 , Qiao Wang 1 , Xiufang Lou 1
Affiliation  

The occurrence of coal and gas outbursts is closely linked to the presence of tectonic coal. To study the pore structure characteristics and adsorption characteristics of different destruction types of coal, nondestructive coal, destructive coal, strongly destructive coal, pulverized coal, and fully pulverized coal are selected based on the coal and gas outburst mine identification specifications. The experimental methods used are liquid nitrogen adsorption, mercury intrusion porosimetry and CH4 isothermal adsorption. The results show that the pore volume obtained by the Barrett–Joyner–Halenda method and the specific surface area increase with increasing destruction type. For all tested coal samples, the N2 adsorption/desorption hysteresis loop is not closed when the relative pressure is low, indicating the existence of ink-bottle pores, an elastic structure of the coal and nitrogen affinity in the coal. With increasing tectonic stress, it becomes more advantageous to produce micropores. The pore volume obtained by the mercury intrusion porosimetry experiment increases with increasing destruction types except for the case of fully pulverized coal. High-pressure mercury causes pore deformation and collapse. When the f value is <0.5, the compression effect of the pores is obvious. The smaller the value of f is, the wider is the pore range affected by the high-pressure mercury. The degree of destruction is positively correlated with the porosity, specific surface area, and Langmuir volume. However, the degree of destruction is negatively correlated with the f value and mercury extrusion efficiency.

中文翻译:

不同破坏类型煤的孔隙结构特征及吸附特征研究

煤与瓦斯突出的发生与构造煤的存在密切相关。为研究不同破坏类型煤的孔隙结构特征和吸附特征,根据煤与瓦斯突出矿井识别规范,选择无损煤、破坏煤、强破坏煤、粉煤和全粉煤。使用的实验方法有液氮吸附、压汞孔隙率法和 CH4 等温吸附。结果表明,Barrett-Joyner-Halenda 方法获得的孔体积和比表面积随着破坏类型的增加而增加。对于所有被测煤样,当相对压力较低时,N2吸附/解吸滞后回线不闭合,表明存在墨水瓶孔,煤的弹性结构与煤中氮的亲和力。随着构造应力的增加,产生微孔变得更加有利。除了完全粉化煤的情况外,压汞法实验得到的孔隙体积随着破坏类型的增加而增加。高压汞导致孔隙变形和坍塌。当f值<0.5时,孔隙的压缩效果明显。f值越小,高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。随着构造应力的增加,产生微孔变得更加有利。除了完全粉化煤的情况外,压汞法实验得到的孔隙体积随着破坏类型的增加而增加。高压汞导致孔隙变形和坍塌。当f值<0.5时,孔隙的压缩效果明显。f值越小,高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。随着构造应力的增加,产生微孔变得更加有利。除了完全粉化煤的情况外,压汞法实验得到的孔隙体积随着破坏类型的增加而增加。高压汞导致孔隙变形和坍塌。当f值<0.5时,孔隙的压缩效果明显。f值越小,高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。除了完全粉化煤的情况外,压汞法实验得到的孔隙体积随着破坏类型的增加而增加。高压汞导致孔隙变形和坍塌。当f值<0.5时,孔隙的压缩效果明显。f值越小,高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。除了完全粉化煤的情况外,压汞法实验得到的孔隙体积随着破坏类型的增加而增加。高压汞导致孔隙变形和坍塌。当f值<0.5时,孔隙的压缩效果明显。f值越小,高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。受高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。受高压汞影响的孔隙范围越大。破坏程度与孔隙率、比表面积和朗缪尔体积呈正相关。然而,破坏程度与f值和压汞效率呈负相关。
更新日期:2019-08-08
down
wechat
bug