当前位置: X-MOL 学术Mech. Adv. Mater. Mod. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain gradient elasticity with geometric nonlinearities and its computational evaluation
Mechanics of Advanced Materials and Modern Processes Pub Date : 2015-07-08 , DOI: 10.1186/s40759-015-0004-3
B Emek Abali , Wolfgang H Müller , Victor A Eremeyev

The theory of linear elasticity is insufficient at small length scales, e.g., when dealing with micro-devices. In particular, it cannot predict the “size effect” observed at the micro- and nanometer scales. In order to design at such small scales an improvement of the theory of elasticity is necessary, which is referred to as strain gradient elasticity. There are various approaches in literature, especially for small deformations. In order to include geometric nonlinearities we start by discussing the necessary balance equations. Then we present a generic approach for obtaining adequate constitutive equations. By combining balance equations and constitutive relations nonlinear field equations result. We apply a variational formulation to the nonlinear field equations in order to find a weak form, which can be solved numerically by using open-source codes. By using balances of linear and angular momentum we obtain the so-called stress and couple stress as tensors of rank two and three, respectively. Since dealing with tensors an adequate representation theorem can be applied. We propose for an isotropic material a stress with two and a couple stress with three material parameters. For understanding their impact during deformation the numerical solution procedure is performed. By successfully simulating the size effect known from experiments, we verify the proposed theory and its numerical implementation. Based on representation theorems a self consistent strain gradient theory is presented, discussed, and implemented into a computational reality.

中文翻译:

具有几何非线性的应变梯度弹性及其计算评价

线性弹性理论在小长度尺度上是不够的,例如在处理微型设备时。特别是,它无法预测在微米和纳米尺度上观察到的“尺寸效应”。为了以如此小的比例进行设计,必须改进弹性理论,这被称为应变梯度弹性。文献中有多种方法,特别是对于较小的变形。为了包括几何非线性,我们首先讨论必要的平衡方程。然后,我们提出一种通用的方法来获得足够的本构方程。通过组合平衡方程和本构关系,得出非线性场方程。我们将变分公式应用于非线性场方程,以便找到弱形式,可以使用开放源代码以数字方式求解。通过使用线性动量和角动量的平衡,我们获得了所谓的应力和耦合应力,分别为第二和第三阶张量。由于处理张量,因此可以应用适当的表示定理。对于各向同性的材料,我们建议应力为两个,而偶合应力为三个材料参数。为了理解它们在变形期间的影响,执行了数值求解程序。通过成功模拟实验中已知的尺寸效应,我们验证了所提出的理论及其数值实现。基于表示定理,提出,讨论并实现了一个自洽应变梯度理论,并将其实现为计算现实。通过使用线性动量和角动量的平衡,我们获得了所谓的应力和耦合应力,分别为第二和第三阶张量。由于处理张量,因此可以应用适当的表示定理。对于各向同性的材料,我们建议应力为两个,而偶合应力为三个材料参数。为了理解它们在变形期间的影响,执行了数值求解程序。通过成功模拟实验中已知的尺寸效应,我们验证了所提出的理论及其数值实现。基于表示定理,提出,讨论并实现了一个自洽应变梯度理论,并将其实现为计算现实。通过使用线性动量和角动量的平衡,我们获得了所谓的应力和耦合应力,分别为第二和第三阶张量。由于处理张量,因此可以应用适当的表示定理。对于各向同性的材料,我们建议应力为两个,而偶合应力为三个材料参数。为了理解它们在变形期间的影响,执行了数值求解程序。通过成功模拟实验中已知的尺寸效应,我们验证了所提出的理论及其数值实现。基于表示定理,提出,讨论并实现了一个自洽应变梯度理论,并将其实现为计算现实。我们为各向同性材料提出了应力为2的应力和耦合应力为3的材料参数。为了理解它们在变形期间的影响,执行了数值求解程序。通过成功模拟实验中已知的尺寸效应,我们验证了所提出的理论及其数值实现。基于表示定理,提出,讨论并实现了一个自洽应变梯度理论,并将其实现为计算现实。对于各向同性的材料,我们建议应力为两个,而偶合应力为三个材料参数。为了理解它们在变形期间的影响,执行了数值求解程序。通过成功模拟实验中已知的尺寸效应,我们验证了所提出的理论及其数值实现。基于表示定理,提出,讨论并实现了一个自洽应变梯度理论,并将其实现为计算现实。
更新日期:2015-07-08
down
wechat
bug