当前位置: X-MOL 学术J. Therm. Anal. Calorim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions
Journal of Thermal Analysis and Calorimetry ( IF 4.4 ) Pub Date : 2019-11-08 , DOI: 10.1007/s10973-019-09017-7
Shang-Hao Liu , Chang-Fei Yu , Mitali Das

Severe fire and explosions are frequent phenomena during handling of organic peroxides that are promoted supremely by conditions such as chemical impurities and thermal instability. As an initiator in the polymerization process, cumene hydroperoxide (CHP) has wide usage in the chemical process industry. This violently reactive chemical is studied here experimentally using differential scanning calorimeter (DSC), an isothermal mode of operation that can access the thermal hazards in the decomposition of CHP alone and later mixed with products following an autocatalytic reaction scheme. Importantly, DSC-evaluated thermokinetic parameters such as reaction enthalpy (ΔHd), time to maximum rate (TMRiso), and maximum heat flow (Qmax) were estimated to ascertain the degree of thermal hazard under various transportation and storage temperatures. The Heat-Wait-Search mode of accelerating rate calorimeter has been used to investigate decomposition kinetics parameters data under an adiabatic condition. Data such as initial exothermic temperature (T0), self-heating rate (dT/dt), pressure rise rate (dP/dt) and pressure–temperature profiles help to gauge the runaway reaction hazard of CHP alone and then mixed with its products to support the autocatalytic model of exothermic decomposition. The curve fitting data indicated that activation energy had reduced from 245.4 to 236.7 and 242.3 kJ mol−1, when CHP was mixed with acetone or dicumyl peroxide, respectively. The decrease in activation energy for autocatalytic material thermal decomposition reaction is depicted here with various experimental findings and mathematical analysis.

中文翻译:

在等温和非等温条件下单独和与产物混合的氢过氧化枯烯的自催化反应的热危险性评估

严重的火灾和爆炸是有机过氧化物处理过程中的常见现象,这种现象在化学杂质和热不稳定性等条件下会得到极大促进。作为聚合过程中的引发剂,氢过氧化枯烯(CHP)在化学过程工业中具有广泛的用途。在这里,使用差示扫描量热仪(DSC)对这种剧烈反应的化学物质进行了实验研究,这是一种等温操作模式,可以单独使用CHP分解并随后按照自动催化反应方案与产物混合,从而获得热危害。重要的是,DSC评估了热动力学参数,例如反应焓(ΔH d),达到最大速率的时间(TMR iso)和最大热流(Q max估计)可确定在各种运输和储存温度下的热危害程度。加速量热仪的“热-等待-搜索”模式已用于研究绝热条件下的分解动力学参数数据。初始放热温度(T 0),自热速率(d T / d t),压力上升速率(d P / d t)和压力-温度曲线等数据有助于评估仅CHP失控反应的危险,然后再评估与其产品混合以支持放热分解的自催化模型。曲线拟合数据表明活化能从245.4降至236.7和242.3 kJ mol -1当CHP分别与丙酮或过氧化二枯基混合时。通过各种实验发现和数学分析描述了自催化材料热分解反应活化能的降低。
更新日期:2019-11-08
down
wechat
bug