当前位置: X-MOL 学术Anal. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
g -Loewner chains, Bloch functions and extension operators in complex Banach spaces
Analysis and Mathematical Physics ( IF 1.7 ) Pub Date : 2020-01-01 , DOI: 10.1007/s13324-019-00352-4
Ian Graham , Hidetaka Hamada , Gabriela Kohr , Mirela Kohr

Let Y be a complex Banach space and let \(r\ge 1\). In this paper, we are concerned with an extension operator \(\varPhi _{\alpha , \beta }\) that provides a way of extending a locally univalent function f on the unit disc \(\mathbb {U}\) to a locally biholomorphic mapping \(F\in H(\varOmega _r)\), where \(\varOmega _r=\{(z_1,w)\in \mathbb {C}\times Y: |z_1|^2+\Vert w\Vert _Y^r<1\}\). We prove that if f can be embedded as the first element of a g-Loewner chain on \(\mathbb {U}\), where g is a convex (univalent) function on \(\mathbb {U}\) such that \(g(0)=1\) and \(\mathfrak {R}g(\zeta )>0\), \(\zeta \in \mathbb {U}\), then \(F =\varPhi _{\alpha , \beta }(f)\) can be embedded as the first element of a g-Loewner chain on \(\varOmega _r\), for \(\alpha \in [0, 1]\), \(\beta \in [0, 1/r]\), \(\alpha +\beta \le 1\). We also show that normalized univalent Bloch functions on \(\mathbb {U}\) (resp. normalized uniformly locally univalent Bloch functions on \(\mathbb {U}\)) are extended to Bloch mappings on \(\varOmega _r\) by \(\varPhi _{\alpha ,\beta }\), for \(\alpha >0\) and \(\beta \in [0,1/r)\) (resp. for \(\alpha =0\) and \(\beta \in [0,1/r]\)). In the case of the Muir type extension operator \(\varPhi _{P_k}\), where \(k\ge 2\) is an integer and \(P_k:Y\rightarrow \mathbb {C}\) is a homogeneous polynomial mapping of degree k with \(\Vert P_k\Vert \le d(1,\partial g(\mathbb {U}))/4\), we prove a similar extension result for the first elements of g-Loewner chains on \(\varOmega _k\). Next, we consider a modification of the Muir type extension operator \(\varPhi _{G,k}\), where \(k\ge 2\) is an integer and \(G:Y\rightarrow \mathbb {C}\) is a holomorphic function such that \(G(0)=0\) and \(DG(0)=0\), and prove that if g is a univalent function with real coefficients on \(\mathbb {U}\) such that \(g(0)=1\), \(\mathfrak {R}g(\zeta )>0\), \(\zeta \in \mathbb {U}\), and g satisfies a natural boundary condition, and if the extension operator \(\varPhi _{G,k}\) maps g-starlike functions from the unit disc \(\mathbb {U}\) into starlike mappings on \(\varOmega _k\), then G must be a homogeneous polynomial of degree at most k. We also obtain a preservation result of normalized uniformly locally univalent Bloch functions on \(\mathbb {U}\) to Bloch mappings on \(\varOmega _k\) by \(\varPhi _{P_k}\).

中文翻译:

复杂Banach空间中的g -Loewner链,Bloch函数和扩展算子

Y为复Banach空间,令\(r \ ge 1 \)。在本文中,我们关注扩展运算符\(\ varPhi _ {\ alpha,\ beta} \),它提供了一种将单位圆盘\(\ mathbb {U} \)上的局部单价函数f扩展为局部双全纯映射\(F \ in H(\ varOmega _r)\),其中\(\ varOmega _r = \ {(z_1,w)\ in \ mathbb {C} \ times Y:| z_1 | ^ 2 + \垂直w \ Vert _Y ^ r <1 \} \)。我们证明了如果˚F可以嵌入作为第一个元素上-Loewner链\(\ mathbb【U} \) ,其中是上凸的(一价)函数\(\ mathbb【U} \)使得\(克(0)= 1 \)\(\ mathfrak {R}克(\ζ电)> 0 \) \(\ζ电\在\ mathbb【U} \) ,然后\(F = \可以将varPhi _ {\\ alpha,\ beta}(f)\)嵌入为\(\ varOmega _r \)g -Loewner链的第一个元素,对于\(\ alpha \ in [0,1] \)\(\ beta \ in [0,1 / r] \)\(\ alpha + \ beta \ le 1 \)。我们还表明在该归一化的一价布洛赫功能\(\ mathbb【U} \) (相应的归一化一致局部单价布洛赫功能\(\ mathbb【U} \) )延伸到布洛赫映射上\(\ varOmega _r \ )\(\ varPhi _ {\ alpha,\ beta} \),对于\(\ alpha> 0 \)\(\ beta \ in [0,1 / r)\)(分别针对\(\ alpha = 0 \)\(\ beta \ in [0,1 / r] \))。对于Muir类型扩展运算符\(\ varPhi _ {P_k} \),其中\(k \ ge 2 \)是整数,\(P_k:Y \ rightarrow \ mathbb {C} \)是齐次的用\(\ Vert P_k \ Vert \ le d(1,\ partial g(\ mathbb {U}))/ 4 \)对度k进行多项式映射,我们证明了g -Loewner链的第一个元素的相似扩展结果在\(\ varOmega _k \)上。接下来,我们考虑对Muir类型扩展运算符\(\ varPhi _ {G,k} \)的修改,其中\(k \ ge 2 \)是整数,\(G:Y \ rightarrow \ mathbb {C} \)是全纯函数,使得\(G(0)= 0 \)\(DG(0 )= 0 \),并证明g\(\ mathbb {U} \)上具有实系数的单价函数,使得\(g(0)= 1 \)\(\ mathfrak {R} g( \ζ电)> 0 \) \(\ζ电\在\ mathbb【U} \) ,和满足的自然边界条件,并且如果扩展操作者\(\ varPhi _ {G,K} \)映射-从单位光盘\(\ mathbb {U} \)的星形函数转换为\(\ varOmega _k \)上的星形映射,则G必须是至多k的齐次多项式。我们还通过\(\ varPhi _ {P_k} \)获得\(\ mathbb {U} \)上归一化的统一局部单价Bloch函数到\(\ varOmega _k \)上Bloch映射的标准化保存结果。
更新日期:2020-01-01
down
wechat
bug