当前位置: X-MOL 学术AAPS Open › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasma modification of microporous polymer membranes for application in biomimetic dissolution studies
AAPS Open Pub Date : 2017-10-24 , DOI: 10.1186/s41120-017-0019-4
Michael M. Puppolo , Justin R. Hughey , Bruce Weber , Traciann Dillon , David Storey , Elizabeth Cerkez , Susan Jansen-Varnum

Biorelevant dissolution is an indispensable tool utilized during formulation development and optimization for the prediction of in vivo bioavailability of pharmaceutical agents. Within that framework, membrane-permeation dissolution methodologies are widely used to model drug absorption. The current work evaluates polymer membrane surface modifications for production of biomimetic membranes to be employed in biorelevant dissolution studies. Biomimetic membranes exhibit hydrophilic and hydrophobic properties to simulate the intestinal membrane environment. Low temperature plasma treatment of microporous polyethersulfone (PES), nylon and polypropylene (PP) polymer membranes was applied to produce low energy surface layers with permanent hydrophobic and hydrophilic functionalities. Surface modifications on microporous polymer membranes were achieved by plasma treatments using tetrafluoromethane (CF4), perfluorohexane (C6F14), dichloromethane (DCM) and water (H2O). Surface characterization of treated membranes was evaluated using scanning electron microscopy energy dispersive x-ray spectroscopy (SEM-EDS), water contact angle (CA) and x-ray photoelectron spectroscopy (XPS) techniques. SEM-EDS analysis of polymer membranes treated with fluorinated and chlorinated solvents/gases depicts altered surface morphologies with enriched porosity. SEM-EDS and XPS analyses demonstrate the chemical modification at the surface of treated membranes is strongly influenced by the type of treatment gas or solvent. Results show fluorination as a more effective and less destructive treatment technique. XPS confirmed the presence of elemental fluorine functional groups at the surface of the PES and nylon membranes. Evaluating elemental changes (F/C ratio) from multiple techniques confirms fluorinated plasma treatments are localized to the surface of the membrane and do not significantly affect the bulk properties. In a supplemental study, a detailed comparison of the plasma treated polymer membranes and porcine intestines revealed the biomimetic nature of the modified membranes.

中文翻译:

等离子体修饰微孔聚合物膜,用于仿生溶解研究

与生物有关的溶出是在制剂开发和优化期间用于预测药剂的体内生物利用度的必不可少的工具。在该框架内,膜渗透溶解方法被广泛用于模拟药物吸收。目前的工作评估了用于生产仿生膜​​的聚合物膜表面改性,以用于生物相关的溶出度研究。仿生膜表现出亲水性和疏水性,以模拟肠膜环境。对微孔聚醚砜(PES),尼龙和聚丙烯(PP)聚合物膜进行低温等离子体处理,以生产具有永久性疏水和亲水功能的低能表面层。通过使用四氟甲烷(CF4),全氟己烷(C6F14),二氯甲烷(DCM)和水(H2O)进行等离子体处理,可以在微孔聚合物膜上进行表面改性。使用扫描电子显微镜能量色散X射线光谱法(SEM-EDS),水接触角(CA)和X射线光电子能谱(XPS)技术评估处理过的膜的表面特性。用氟化和氯化溶剂/气体处理过的聚合物膜的SEM-EDS分析表明,表面形态发生了变化,并增加了孔隙率。SEM-EDS和XPS分析表明,处理过的膜表面的化学修饰受处理气体或溶剂类型的强烈影响。结果表明氟化是一种更有效且破坏性较小的处理技术。XPS证实了PES和尼龙膜表面上存在元素氟官能团。通过多种技术评估元素变化(F / C比),证实了氟化等离子体处理仅限于膜表面,并且不会显着影响整体性能。在一项补充研究中,对血浆处理过的聚合物膜和猪肠的详细比较揭示了改性膜的仿生特性。
更新日期:2017-10-24
down
wechat
bug