当前位置: X-MOL 学术Artif. Intell. Rev. › 论文详情
Spatiotemporal clustering: a review
Artificial Intelligence Review ( IF 5.095 ) Pub Date : 2019-07-15 , DOI: 10.1007/s10462-019-09736-1
Mohd Yousuf Ansari, Amir Ahmad, Shehroz S. Khan, Gopal Bhushan, Mainuddin

An increase in the size of data repositories of spatiotemporal data has opened up new challenges in the fields of spatiotemporal data analysis and data mining. Foremost among them is “spatiotemporal clustering,” a subfield of data mining that is increasingly becoming popular because of its applications in wide-ranging areas such as engineering, surveillance, transportation, environmental and seismology studies, and mobile data analysis. This review paper presents a comprehensive review of spatiotemporal clustering approaches and their applications as well as a brief tutorial on the taxonomy of data types in the spatiotemporal domain and patterns. Additionally, the data pre-processing techniques, access methods, cluster validation, space–time scan statistics, software tools, and datasets used by various spatiotemporal clustering algorithms are highlighted.
更新日期:2020-04-20

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug