当前位置: X-MOL 学术J. Geom. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
$$L^p$$Lp -Estimates for the Heat Semigroup on Differential Forms, and Related Problems
The Journal of Geometric Analysis ( IF 1.1 ) Pub Date : 2019-04-05 , DOI: 10.1007/s12220-019-00188-1
Jocelyn Magniez , El Maati Ouhabaz

We consider a complete non-compact Riemannian manifold satisfying the volume doubling property and a Gaussian upper bound for its heat kernel (on functions). Let \(\overrightarrow{\Delta }_k \) be the Hodge–de Rham Laplacian on differential k-forms with \(k \ge 1\). By the Bochner decomposition formula, \(\overrightarrow{\Delta }_k = \nabla ^* \nabla + R_k\), where \(\nabla \) denotes the Levi-Civita connection and \(R_k\) is a symmetric section of \(\mathrm{End}(\Lambda ^kT^*M)\). Under the assumption that the negative part \(R_k^-\) is in an enlarged Kato class, we prove that for all \(p \in [1, \infty ]\), \(\Vert e^{-t\overrightarrow{\Delta }_k}\Vert _{p-p} \le C ( t \log t)^{\frac{D}{4}(1- \frac{2}{p})}\) (for large t), where D is a homogeneous “dimension” appearing in the volume doubling property. This estimate can be improved if \(R_k^-\) is strongly sub-critical. In general, \((e^{-t\overrightarrow{\Delta }_k})_{t>0}\) is not uniformly bounded on \(L^p\) for any \(p \not = 2\). We also prove the gradient estimate \(\Vert \nabla e^{-t\Delta }\Vert _{p-p} \le C t^{-\frac{1}{p}}\), where \(\Delta \) is the Laplace–Beltrami operator (acting on functions). Finally we discuss heat kernel bounds on forms and the Riesz transform on \(L^p\) for \(p > 2\).

中文翻译:

$$ L ^ p $$ Lp-差分形式和相关问题的热半群的估计

我们考虑一个完全的非紧黎曼流形,该流形满足体积加倍属性和其热核(在函数上)的高斯上限。令\(\ overrightarrow {\ Delta} _k \)是带有\(k \ ge 1 \)的微分k形式上的Hodge-de Rham Laplacian 。根据Bochner分解公式,\(\ overrightarrow {\ Delta _k = \ nabla ^ * \ nabla + R_k \),其中\(\ nabla \)表示Levi-Civita连接,\(R_k \)是对称截面的\(\ mathrm {完}(\ LAMBDA ^ KT ^ * M)\) 。假定负部分\(R_k ^-\)在扩大的Kato类中,我们证明对于所有\(p \ in [1,\ infty] \)\(\ Vert e ^ {-t \ overarrowarrow {\ Delta} _k} \ Vert _ {pp} \ le C(t \ log t)^ {\ frac {D} {4}(1- \ frac {2 } {p})} \)(对于大t而言),其中D是出现在体积加倍属性中的齐次“维数”。如果\(R_k ^-\)非常次临界,则可以改进此估计。通常,对于任何\(p \ not = 2 \ \((e ^ {-t \ overarrowarrow {\ Delta} _k})_ {t> 0} \)\(L ^ p \)上的边界不是统一的。 )。我们还证明了梯度估计\(\ Vert \ nabla e ^ {-t \ Delta} \ Vert _ {pp} \ le C t ^ {-\ frac {1} {p}} \),其中\(\ Delta \)是Laplace–Beltrami运算符(作用于函数)。最后,我们对形式讨论热内核边界和中Riesz变换上\(L ^ P \)\(P> 2 \)
更新日期:2019-04-05
down
wechat
bug