当前位置: X-MOL 学术Petrology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Djerfisherite in Monticellite Rocks of the Krestovskaya Intrusion (Polar Siberia)
Petrology ( IF 1.5 ) Pub Date : 2019-06-03 , DOI: 10.1134/s086959111902005x
L. I. Panina , A.T. Isakova

Djerfisherite in the monticellite rocks of the Krestovskaya Intrusion is found in primary melt inclusions, mono- and polysulfide globules, and in the djerfisherite–hydrogarnet segregations. Melt inclusions are represented by three types. Type I is observed in the cores of perovskite phenocrysts and monticellite grains and corresponds to one of the early crystallization stages of the parental larnite-normative alkali ultrabasic magma enriched in water and other volatiles. Daughter phases of the inclusions are clinopyroxene, serpentine, phlogopite, apatite, nepheline, hydrogarnet, magnetite, djerfisherite, pectolite, and calcite. In some type I inclusions, melt at 1230–1250°C was immiscibly split into two fractions: alkali silicate fraction and highly fluidized water-bearing low-silica fraction enriched in alkali, sulfur, and CO2. The types II and III inclusions in perovskite, monticellite, Ti garnet, and melilite were formed through the spatial separation of immiscible phases. This follows from the similarity of the modal composition of types II and III melt inclusions to the normative composition of immiscible fractions of type I inclusions. Type II inclusions contain mainly water-bearing silicate daughter phases (hydrogarnet, serpentine, phlogopite, and pectolite), as well as djerfisherite, calcite, and magnetite. Type III inclusions contain clinopyroxene, nepheline, apatite, magnetite, djerfisherite, calcite, and pectolite. The djerfisherite–hydrogarnet segregations are confined to the Ti-magnetite and perovskite phenocrysts and fractures radiating from them in monticellite. The mineral composition of the djerfisherite–hydrogarnet segregations together with their surrounding is similar to the composition of type II inclusions containing similar water-bearing silicates, djerfisherite, calcite, and magnetite. Such similarity gives grounds to relate the formation of the djerfisherite–hydrogarnet segregations, as type II inclusions, with the spatial separation and crystallization of highly fluidized low-silica melt enriched in water, alkalis, sulfur, and CO2. According to the homogenization experiment, the crystallization of highly fluidized melt at 990–1090°C was accompanied by silicate–sulfide immiscibility and the formation of globular, emulsion-like, and myrmekite structures in the djerfisherite–hydrogarnet segregations, as well as mono- and polysulfide globules with djerfisherite in the hydrogarnet–calcite–serpentine substrate. The formation of ferrobrucite–carbonate–hydrogarnet globules in the djerfisherite–hydrogarnet segregations was also related to melt immiscibility, which again confirms the magmatic origin of the latter. Sometimes, djerfisherite in the djerfisherite–hydrogarnet segregations becomes coarser and forms rims, bands, and veinlets, which is likely explained by the high mobility and low viscosity of sulfide melt. Scarce grains of heazlewoodite, godlevskite, and pentlandite hosted in the djerfisherite–hydrogarnet segregations frequently have the same shape as djerfisherite, which indirectly suggests their simultaneous crystallization from the same melt. The chemical composition of the djerfisherite from mono- and polysulfide globules, djerfisherite–hydrogarnet segregations, and type I inclusions, as most Yakutian kimberlites, is characterized by the high (12.1–16.7 wt %) Ni and low (0.1–0.9 wt %) Cu contents. The composition of the djerfisherite from types II and III inclusions differs in the lowered (3.3–1.6 wt %) Ni and elevated (40.9–53.2 wt %) Fe contents; type III inclusions have high Cu content: from 7.6 to 10.6 wt %.

中文翻译:

Krestovskaya入侵(极地西伯利亚)的蒙脱石岩中的辉绿岩

Krestovskaya侵入岩的蒙脱石岩石中的辉石岩存在于初生熔体包裹体,单硫化物和多硫化物小球中,以及在辉石-水石榴石偏析中。熔体夹杂物由三种类型表示。I型在钙钛矿斑晶和蒙脱石晶粒的核心中观察到,并且对应于富水和其他挥发物的母体闪锌矿规范碱性超碱性岩浆的早期结晶阶段之一。夹杂物的子相为斜辉石,蛇纹石,金云母,磷灰石,霞石,水榴石,磁铁矿,水母,方沸石和方解石。在某些I型夹杂物中,将1230–1250°C的熔体不混溶地分为两部分:碱金属硅酸盐部分和富含碱,硫和一氧化碳的高度流态化的含水低硅部分。2。钙钛矿,蒙脱石,钛石榴石和陨石中的II型和III型夹杂物是通过不混溶相的空间分离而形成的。这是由于II型和III型熔体夹杂物的模态组成与I型夹杂物的不溶混馏分的规范组成相似所致。II型夹杂物主要包含含水的硅酸盐子相(氢石榴石,蛇纹石,金云母和方沸石),以及铝矾石,方解石和磁铁矿。III型夹杂物包含斜辉石,霞石,磷灰石,磁铁矿,硬锌矿,方解石和沸石。硬硅钙石-水石榴石偏析仅限于钛磁铁矿和钙钛矿型隐晶,以及在其蒙脱石中放射出的裂缝。铝矾石-水石榴石偏析物的矿物组成及其周围环境与包含相似含水硅酸盐,铝矾石,方解石和磁铁矿的II型夹杂物的组成相似。这种相似性为将II类夹杂物-辉石-水石榴石偏析的形成与高度流化的富含水,碱,硫和CO的低硅熔体的空间分离和结晶联系起来提供了依据。2。根据均质实验,在990–1090°C时,高度流化的熔体的结晶伴随着硅酸盐与硫化物的不混溶性,以及在辉石-水石榴石偏析中形成球状,乳状和黑硅铁矿结构,以及在氢石榴石-方解石-蛇纹石基质中含有多金属珠矿的多硫化物小球。硬硅酸盐-水石榴石偏析中铁铝酸盐-碳酸盐-氢石榴石小球的形成也与熔体不混溶有关,这再次证实了后者的岩浆成因。有时,在辉石-氢石榴石偏析中的辉石会变得更粗糙,并形成边缘,条带和细纹,这可能是由于硫化物熔体的高迁移率和低粘度所致。稀有的杂木,高岭石,硬锌矿-水石榴石偏析中含有的辉石和膨润土通常具有与硬锌矿相同的形状,这间接表明它们是从同一熔体中同时结晶的。与大多数雅库特金伯利岩一样,由单硫化物和多硫化物小球,绿藻石-氢石榴石偏析和I型夹杂物形成的绿藻石的化学成分具有高(12.1-16.7 wt%)镍和低(0.1-0.9 wt%)的特征。铜含量。II型和III型夹杂物的硬锌矿组成不同,其Ni含量较低(3.3–1.6 wt%),Fe含量较高(40.9–53.2 wt%)。III型夹杂物具有较高的Cu含量:7.6至10.6 wt%。与大多数雅库特金伯利岩一样,由单硫化物和多硫化物小球,绿藻石-氢石榴石偏析和I型夹杂物形成的绿藻石的化学成分具有高(12.1-16.7 wt%)镍和低(0.1-0.9 wt%)的特征。铜含量。来自II型和III型夹杂物的硬锌矿的成分在降低的(3.3–1.6重量%)镍和升高的(40.9–53.2重量%)铁含量方面有所不同。III型夹杂物具有较高的Cu含量:7.6至10.6 wt%。与大多数雅库特金伯利岩一样,由单硫化物和多硫化物小球,绿藻石-氢石榴石偏析和I型夹杂物形成的绿藻石的化学成分具有高(12.1-16.7 wt%)镍和低(0.1-0.9 wt%)的特征。铜含量。II型和III型夹杂物的硬锌矿组成不同,其Ni含量较低(3.3–1.6 wt%),Fe含量较高(40.9–53.2 wt%)。III型夹杂物具有较高的Cu含量:7.6至10.6 wt%。镍含量为6 wt%;铁含量提高了(40.9-53.2 wt%);III型夹杂物具有较高的Cu含量:7.6至10.6 wt%。镍含量为6 wt%;铁含量提高了(40.9-53.2 wt%);III型夹杂物具有较高的Cu含量:7.6至10.6 wt%。
更新日期:2019-06-03
down
wechat
bug